How Should Policy Responses to the COVID-19 Pandemic Differ in the Developing World?

Titan Alon¹ Minki Kim¹ David Lagakos¹² Mitchell VanVuren¹

 1 UCSD

²NBER

June 19, 2020

Policy Responses to COVID-19 So Far

The West (US and Europe)

- Blanket lockdowns
- Substantial unemployment insurance + direct cash transfers

Developing countries

- Blanket lockdowns
- Not so extensive transfers
- Infections rising rapidly now policymakers unclear how to respond

This Paper: How Policy Should Differ in Developing Countries

Preliminary analysis using incomplete-markets macro model with disease spread

Key reasons for different policy responses

- 1. Younger populations
- 2. Less fiscal capacity
- 3. Large informal sector
- 4. Less healthcare capacity
- 5. More hand-to-mouth households

Quantitative Results from Our Model (So Far)

- Blanket lockdowns much less effective in developing countries
 - Save around half as many lives per GDP lost
- Yet blanket lockdowns still better than no lockdowns
- Age-dependent policy even more effective in developing countries
 - Save more lives per unit of GDP lost
 - Lower fiscal & economic cost of shielding old, since so few of them

Developed vs Developing Countries: Key Differences Relevant for the Pandemic

Developed vs Developing Countries: Key Differences

Model

Outline of the Model

Epidemiology

▶ SICR with age heterogeneity as in Glover et al. (2020)

Households

- ► Face uninsured idiosyncratic labor income risk and health risk
- Accumulate assets endogenously, face credit constraint

Sectors

- ► Formal: "skilled production"
- ► Informal: "unskilled production," cannot enforce lockdowns or collect taxes

Government

Collects taxes and makes transfers but with limited fiscal capacity

Households and Preferences

- Two "age groups": young (ω) and old (1ω)
- Preferences (of the living):

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \beta_j^t \Big\{ \log(c_t) + ar{u} \Big\}
ight]$$

- ▶ β_j is discount factor of age group j, where $j \in \{y, o\}$
- \bar{u} : flow utility of being alive

Permanent Productivities and Idiosyncratic Shocks: Roy Meets Aiyagari

- Individuals endowed with vector of permanent productivities {z,1} in formal and informal sectors, as in Roy (1951)
- Formal sector productivity $z \sim G$
- Individuals face idiosyncratic productivity shock as in Aiyagari (1994)

$$\log v_{t+1} = \rho_v \log v_t + \varepsilon_{t+1} \quad \text{with} \quad \varepsilon_{t+1} \stackrel{iid}{\sim} F(0, \sigma_v)$$

Individuals choose sector each period

Health Shocks

- \blacktriangleright Being infected drops all productivities by fraction 0 $<\eta\leq 1$ until recovery
- Being critical drops all productivities to 0 until recovery
- Death means \bar{u} is lost permanently

Lockdown Technology

Lockdown lowers productivity and infection rate for everyone in the formal sector

- ▶ Productivity *z* goes down to $\lambda_w z$, $0 < \lambda_w \leq 1$
- Probability of becoming infected goes down by fraction $1 \lambda_h$ ($0 < \lambda_h \leq 1$)
- Lower λ_w and λ_h means stricter lockdown

Production and Firm Profit Maximization

Final good technology (Ulyssea 2018):

$$Y = L^{\alpha} K^{1-\alpha}, \quad 0 < \alpha \le 1$$
$$K = K^{D} + K^{F}$$
$$L = \left[AL_{f}^{\frac{\sigma-1}{\sigma}} + L_{i}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

- ► A is the exogenous productivity of formal sector (Caselli-Coleman, 2006)
- K^D and K^F are domestic and foreign capital, respectively.
- Capital rented at r^F , an exogenously given international rental rate

Precautionary savings generate endogenous asset distribution

- ▶ Individuals can save at gross interest rate $R = 1 + r^F \chi$
- χ is the "financial wedge" between return on saving and world market
- Borrowing not allowed
- Individual's budget constraint (assuming no lockdown):

$$c + a' \leq \mathbb{1}_{\{s=i\}} w_i v + (1 - \tau) \mathbb{1}_{\{s=f\}} w_f z v + (1 + r)a + T$$

Health States and Transitions

Hospital Capacity

- $\blacktriangleright~\Theta$ is maximum ICU capacity per capita (0 < $\Theta < 1)$
- Probability of receiving an ICU bed is min $\{\frac{\Theta}{N_{*}^{\mathbb{C}}}, 1\}$
- Fatality rate $\pi_{jt}^{\mathbb{D}}$:

$$\pi_{jt}^{\mathbb{D}}(\mathsf{N}_t^{\mathbb{C}},\Theta) = egin{cases} \pi_j^{\mathbb{D}} & ext{if assigned ICU bec} \ \kappa imes \pi_j^{\mathbb{D}} & ext{if not assigned} \end{cases}$$

- $\pi_j^{\mathbb{D}}$: baseline fatality rate of an age group j patient
- \blacktriangleright κ governs the impact of hospital overuse on fatality rate

Quantitative Analysis

Quantitative Analysis

- Solve for stationary distribution of model and calibrate two versions: "advanced economy" and "developing economy"
- Pandemic introduced as "MIT shock" no one saw it coming (actually realistic!) but perfect information since (still crazy)
- Solve full transition path in both economies under various lockdown policies

Calibration of Economic Parameters

Var	Description	Value	Source / Target
rF	Exogenous interest rate	0.0006	Pre-COVID T-Bills rate 1.5%
ϕ	Shape-parameter of Frechet distribution G	2.7	Lagakos and Waugh (2013)
$ ho_{v}$	Persistence of idiosyncratic income shock	0.91	Floden and Linde (2001)
σ_{v}	St.Dev of idiosyncratic income shock	0.04	Floden and Linde (2001)
α	Labor share	0.6	Gollin (2002)
β_y	Discount factor for the young	0.9984	Glover et al. (2020)
β_{o}	Discount factor for the old	0.9960	Glover et al. (2020)

Calibration of Epidemiological Parameters

Var	Description	Value	Source or Target
η	Effect of infection on productivity	0.8	Asymptomatic cases
κ	Impact of hospital overuse on fatality	2	Glover et al. (2020)
λ_w	Effect of lockdown on productivity	0.68	Blandin and Bick (2020)
λ_h	Effect of lockdown on infection rate	0.75	U.S. cumulative infections
$\pi_{\mathbf{v}}^{\mathbb{C}}$	Rate of young entering ${\mathbb C}$ from ${\mathbb I}$	3.4%	Ferguson et al. (2020)
$\pi_o^{\mathbb{C}}$	Rate of old entering ${\mathbb C}$ from ${\mathbb I}$	19.9%	Ferguson et al. (2020)
$\pi_{\mathbf{v}}^{\mathbb{D}}$	Rate of young entering $\mathbb D$ from $\mathbb C$	2.8%	Ferguson et al. (2020)
$\pi_o^{\mathbb{D}}$	Rate of old entering ${\mathbb D}$ from ${\mathbb C}$	10.9%	Ferguson et al. (2020)
$\beta^{\mathbb{I}}$	Behavior-adjusted infection generating rate	2.0	Peak Infection Rates

Parameters Varying between Advanced and Developing Economies

		Advanced	Developing	Source or
Var	Description	Economies	Economies	Target
Α	Formal sectors TFP	3.0	0.15	1% labor informality in US
ū	Flow value of being alive	$11.4 \bar{c}^{US}$	$11.4\bar{c}^{DEV}$	Glover et al. (2020)
χ	Spread b/w borrowing and lending	0	0.66%	Donovan (2019)
au	Marginal tax rate	0.25	0.15	Besley and Persson (2013)
Δ	Iceberg cost in tax collection	1	2.22	Dzansi et al. (2013)
\bar{B}	Lockdown emergency transfers	1%	0.1%	Lockdown transfer programs
ω	Share of young in population	73%	92%	2018 ACS / World Bank
Π	Int' aid / natural resources revenue	0	10% of GDP	World Bank
Θ	Hospital capacity per capita	0.00042	0.00011	Glover et al. (2020) / WHO

Simulated COVID-19 Infection Rates, Advanced Economy

Simulated COVID-19 Infection Rates, Developing Economy

Model Predictions: Effects of the COVID-19 Pandemic

	Lifetime Welfare (%)	GDP (%)	Fatalities per 100,000 People
Advanced Economies			
No Lockdown	-8.3	-1.8	1,102
Twenty-Eight-Week Lockdown	-5.5	-18.2	778
Panel B: Developing Economies			
No Lockdown	-4.1	-1.1	412
Twenty-Eight-Week Lockdown	-3.6	-8.2	340

Counterfactuals: Cumulative Contributions (28-Week Lockdown)

Counterfactual: Cumulative Contributions (28-Week Lockdown)

Counterfactual: Cumulative Contributions (28-Week Lockdown)

Age-Dependent Lockdowns a.k.a. "Shielding the Elderly"

- Highly heterogeneous effects by age suggest role for age-dependent policies
- Studied in U.S. by Acemoglu, Chernozhukov, Werning and Whinston (2020), Bairolyia & Imrohoroglu (2020) and others
- Model as lockdown only of old, with transfers only to old

Lives Saved per 100,000 People for every Point of GDP Lost

	Advanced Economy		Developing Economy	
	Blanket Lockdown	Age-dependent Lockdown	Blanket Lockdown	Age-dependent Lockdown
Twenty-Eight-Week	19.8	54.0	10.2	95.2

Lives Saved per 100,000 People for every Point of GDP Lost

	Advanced Economy		Developing Economy		
	Blanket Lockdown	Age-dependent Lockdown	Blanket Lockdown	Age-dependent Lockdown	
Twenty-Eight-Week	19.8	54.0	10.2	95.2	

 \rightarrow More potent in developing economy since only 8% old, compared to 27% in advanced economy, and enough fiscal capacity for transfers to old

Conclusions and Future Work

- Blanket lockdowns better than nothing in developing economies, but not real effective
- Case for "shielding the old" rather than blanket lockdowns even stronger in developing countries
- Lots of caveats and better data needed to draw firmer conclusions
- Future work: adding back children, intergenerational household structure, policy analysis of school openings

Extra Slides

Model Fit of Cumulative Infection Cases in the United States

Share of Population Above Age 65

32/40

Share fo Self-Employed Workforce

Changes in Mobility Across Countries During Lockdown Periods

Employment Rate in Ghana Around the Lockdown Period

35/40

Hours Worked in Ghana Around the Lockdown Period

Mobility in Ghana Around the Lockdown Period

Borrowing During Pandemic

- Countries can access to emergency bonds B_t
- Used to finance additional welfare transfers during government imposed lockdowns
- Funds borrowed accrue interest at rate $1 + r^F$ until the pandemic ends
- > They are repaid through annual annuities after the pandemic ends

$$B_t = \begin{cases} \bar{B} & \text{during the lockdown} \\ -\frac{r^F}{1+r^F} \times \sum_{t_l-t_s}^{t_l-t_e} \left(1+r^F\right)^t \bar{B} & \text{after pandemic ends} \\ 0 & \text{otherwise} \end{cases}$$

Calibrating Epidemiology Parameters: Entering Critical Stage

- Ferguson et al. (2020) report the average duration of time individuals spend in infectious stage is 13 days (5 days in asymptomatic + 8 days in symptomatic)
- We assume the duration is 14 days
- ▶ We assume 50% of infectious people are asymptomatic (there's no good estimate)
- Define old as > 60 yrs old, exclude < 15 yrs old
- Compute the weighted average of the percentage of hospitalized cases requiring critical care, using weights equal to the percentage of the US population for different age groups (from 2018 ACS)
- This gives us

$$\pi_y^{\mathbb{C}} = 6.85\% \times \frac{1}{2} = 3.43\%$$

 $\pi_o^{\mathbb{C}} = 39.75\% \times \frac{1}{2} = 19.88\%$

Calibrating Epidemiology Parameters: Fatality Rates

- Ferguson et al. (2020) report the average duration of time individuals spend in the critical condition stage is 10 days. We assume the duration is 14 days
- Using Table 1 in Ferguson et al. (2020), infection fatality ratio adjusted to the US population distribution is 0.18% for young and 4.32% for old.
- Back out $\pi_i^{\mathbb{D}}$ using the formula

$$egin{aligned} \pi_y^{\mathbb{C}} imes \pi_y^{\mathbb{D}} &= 0.18\% \ \pi_o^{\mathbb{C}} imes \pi_o^{\mathbb{D}} &= 4.32\% \end{aligned}$$

This gives us

$$\pi_y^{\mathbb{D}} = 2.76\%$$

 $\pi_o^{\mathbb{D}} = 10.86\%$

Contact Patterns at Workplace Similar Across Countries

Working place contacts are least assortative

Figure: Age-specific contact patterns at workplace, Germany, Bolivia, and South Africa. *x*-axis is the age of individual. *Source*: Prem, Cook, and Jit (2017) PLOS Computational Biology

Contact Patterns at Home Vary Across Countries

Figure: Age-specific contact patterns at home, Germany, Bolivia, and South Africa. *x*-axis is the age of individual. *Source*: Prem, Cook, and Jit (2017) PLOS Computational Biology

Contact Patterns at School

Figure: Age-specific contact patterns at school, Germany, Bolivia, and South Africa. *x*-axis is the age of individual. *Source*: Prem, Cook, and Jit (2017) PLOS Computational Biology

Cohabitation and Contact Patterns

Figure: Number of contacts at home made by individuals in the POLYMOD study stratified by household sizes. *Source*: Prem, Cook, and Jit (2017) PLOS Computational Biology