News Members Research Publications Teaching External services Contact

Data Science and Mining Team
Ecole Polytechnique

Data Science & Mining group
LIX @ Ecole Polytechnique
& AUEB

Graph Mining for fraud detection

Michalis Vazirgiannis

http://www.lix.polytechnique.fr/dascim/

June 2020

http://www.lix.polytechnique.fr/dascim/

Graphs are everywhere

Mathematical aspects of
computer-aided share trading.
We consider problems of
statistical analysis of share
prices and propose
probabilistic characteristics to
describe the price series. We
discuss three methods of
mathematical modelling of
price series with given
probabilistic characteristics.

computer—aid

o

aspect
problem

statist

Edge weights m(a)ﬂlemat trade

NawwNn =

a
probabilist

model

8&1&:
rice

analysi

Ocharacterist

O method

Motivation - Text Categorization

Mathematical aspects of computer—aid

computer-aided share trading. O

We consider problems of aspect
statistical analysis of share O
prices and propose problem

probabilistic characteristics o
describe the price series. We
discuss three methods of
mathematical modelling of

Given a text, create a

giclfabi1izfirciccshara;:rhistic§iven Syt o graph where
Edge weights mathemat trade - vertices correpond to
; Q Cnge terms
i . - two terms are linked
5 O o= o to each other if they
probabilist analyst co-occur within a
fixed-size sliding
(Ocharacterist window
O.
Ser1
O
model

O method

Rousseau et al. “Text categorization as a graph classification problem.”. ACL’'15

Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

@ structure
@ sequence

@ chemical properties

secondary sequence structure
structure elements

Use graph kernels to

- measure structural similarity between proteins

- predict the function of proteins

Borgwardt et al. “Protein function prediction via graph kernels”. Bioinformatics 21

Motivation - Malware Detection

Given a computer program, create its control flow graph

processed pages.append(processed page)
visited += 1
links = extract links(html code)
for link in links:
if link not in visited links:
links to visit.append(link)

return create vocabulary(processed pages)

def parse page(html code):
punct = re.compile([~A)
soup = BeautifulSoup(html code,)
text = soup.get text()

processed text = punct.sub(, text)
tokens = processed text.split() %
tokens = [token.lower() for token in tokens]

return tokens

def create vocabulary(processed pages):
vocabulary = {}
for processed page in processed pages:
for token in processed page:
if token in vocabulary:
vocabulary[token] += 1
else:
vocabulary[token] = 1

return vocabulary

Compare the control flow graph of the problem against the set of control flow
graphs of known malware

If it contains a subgraph isomporphic to these graphs — malicious code inside the
program

Gascon et al. “Structural detection of android malware using embedded call graphs”. In AlSec’13

Machine Learning on Graphs

Node classification
« given a graph with labels on some nodes, provide a high quality labeling for the rest of

the nodes

Graph clustering
« given a graph, group its vertices into clusters taking into account its edge structure in
such a way that there are many edges within each cluster and relatively few between the

clusters

Link Prediction
e given a pair of vertices, predict if they should be linked with an edge

Graph classification
« given a set of graphs with known class labels for some of them, decide to which class the

rest of the graphs belong

Graph Classification

class -1

class 1

ooo [ooy

i:;':i o

class 1 i §

class 1

Input data G € X
Output y € {—1,1}
Training set D = {(G1,y1),---,(Gn,¥n)}

Goal: estimate a function f : X — R to predict y from

f(x)

?7??

77?7

Graphs to vectors - kernels

@ To analyze and extract knowledge from graphs, one needs to perform
machine learning tasks

@ Most machine learning algorithms require the input to be represented as a
fixed-length feature vector

@ There is no straightforward way to transform graphs to such a representation

Graph Kernels

Definition (Graph Kernel)
A graph kernel kK : G X G — R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings ¢ : X — H of a pair of
graphs into a Hilbert space

- Makes the whole family of kernel methods applicable to graphs
G4

A
g; —_\\ #(G1) H
G2
>
I I ——

Fraud in graph of payments

e graphs from transaction data from industry X
* nodes represent users o

* edges the sum of transactions in a period of time.
 Supervised fraud communities of types t1, t2,t3 - : :)
* Fraudulent nodes or communities have similar & |) :

5

structural patterns ‘ !

8 3

N
3 . 4
,
— ()
i

* Data set:

e 32 fraud communities (6 t1, 6 t2, 20 t3) ~ 3K nodes

* asample of the user network (containing those
communities) ~ 15M nodes, and ~22M edges.

e Each fraud node in a fraud community is considered a
ground-truth fraudster.

e Goalis to find (likely) fraudsters in the network.

10

Degree distribution in the three fraud classes

tl

30 {
201
y 4 l. — . s, B e, s, —— 0+ -.lll l--- -. 0+ Lq —y—
12345 7 4 11 12 13 M4 15 18 19 12 1567891 13141516 2324 e ¢ 19 24 %
Degree

)))))))

2

- T 154
10 4
201
y 4 III. - - - - I“ n am - L L n
1234 11 16182022 29 % 1234567 9 1213 21 296 31
Degree

S 24
204
10 4
od o A e om -
1234567 90 15 20 24 27 52
Degree Degree
4B 7 74
18 .
6 61
: I ‘ I I | I : \I“||A
34 34
1234 67189 1 141516 1819 2 17 19 2 23 12 1335 IRABARAN
Degree e Degree

(((((

Graph Kernel Based fraud exploration

* Fraudulent graphs: 32 directed graphs labeled as fraud with
three different types: “t1”, “t2”, “t3”. Each node in every graph
corresponds to a fraud account. edges between nodes
represent transactions.

* two attributes: one is total transaction volume, another is the
number of transactions.

* Normal graphs: 201 graphs randomly sampled from the
complete network which are very unlikely to contain fraudsters.

* (Capitalise on graph kernels for the similarity computations

Fraud in graphs

 Compared the four categories of graphs —t1,t2,t3 and a randomly sampled non-fraud
- with respect xto a variety of graph metrics.

Observations:

* t1 and t2 are similar in terms of graph topology while t3 is quite different

t3 graphs contain fewer nodes but are denser

t3 subgraphs contain much fewer SCCs, as opposed to t1, t2 !

 money flow in tl, t2 graphs are mostly unidirectional (whereas in t3 it's
multidirectional).

* However, in terms of transaction sums, t3 and t2 are actually more similar than t2 and
t1!

Shortest path kernel for fraud graph similarity

Compares the length of shortest-paths of two graphs

- and their endpoints in labeled graphs

Floyd-transformation

Floyd-transformation

C
O

Transforms the original graphs into shortest-paths graphs Q

o Compute the shortest-paths between all pairs of vertices of the input graph -
G using some algorithm (i.e. Floyd-Warshall)

o Create a shortest-path graph S which contains the same set of nodes as th
input graph G

@ All nodes which are connected by a walk in G are linked with an edge in S G S

o Each edge in S is labeled by the shortest distance between its endpoints in G

[Borgwardt and Kriegel. ICDM’05]
14

Shortest path kernel —an Example

Floyd-transformations

In S; we have:

~ O - 4 edges with label 1
l = " ' - 4 edges with label 2
‘

C - 2 edges with label 3
Gl 51 In S> we have:
: - 4 edges with label 1
= E - 2 edges with label 2
Go S

Hence, the value of the kernel is:

k(G,G) = Y > Kedgeer,€) =4-4+4-2=24

e €k eckE 15

Fraudulent graph prediction

We compute the kernel matrix of the graphs
calculated by shortest-path kernel.

With kernel PCA, we are able to extract the
principle components (2 in our case) of them by
simply using a precomputed similarity matrix
without knowing the actual embeddings.

classification is done by SVM

Experiments and Analytics

kernel PCA to visualize our result.
colours of points represent their types

colours of circles around the points represent the
predictions of our model. The colour-type
correspondence is:

Red: ‘1’
Green: ‘t3’
Blue: “t2’

Black: Non-fraudulent graphs

Kernel PCA projection of graph embeddings

o

16

Fraudulent graph projection — normal graphs

Kernel PCA projection of graph embeddings

* Projection of the three
classes in the embedding 0o ' o
space (with other random “ .
normal graphs)

Onging work: Community mining for fraud
detection

e Assume fraudulent community types in huge graphs

* size: The size of each subgraph should be of a manageable size. This
would potentially assist in human processing of reported subgraphs.

e overlapping clusters: a node may have connectivity to multiple
partitions.

* Goals
* optimize a clustering algorithm in efficiency
* control the cluster size
* maintain multiple cluster assignments for each node.

A soft introduction to graph clustering
m Given Graph G=(V,E) undirected:

— Vertex Set V={v,,.....v,}, Edge e; between v, and V,
* we assume weight w;>0 for g;

— |V| : number of vertices
— d. degreeof v.: d;, =)., cy W
o) =Yyev d;
—forAcVA=V-A4
— Given

ABcV&ANB =0, w(4,B) = ZvieA'vjEBw
— D : Diagonal matrix where D(i,i) = d,
— W : Adjacency matrix W(i,j) = w;;

7

7

19

Graph-Cut

* For k clusters:
—cut(4,,..,Ak) =1/2 Z?=1W(Aiﬂ4_i)

» undirected graph:1/2 we count twice each edge

* Min-cut:Minimize the edges’ weight a
cluster shares with the rest of the graph

20

Min-Cut

* Easy for k=2 : Mincut(A;A,)
e Stoer and Wagner: “A Simple Min-Cut Algorithm”

* In practice one vertex is separated from the rest
* The algorithm is drawn to outliers

Normalized Graph Cuts

 We can normalize by the size of the cluster (size
of sub-graph) :
— number of Vertices (Hagen and Kahng, 1992):

Ratiocut(4,, ...Ak) = ¥¥_, cutlfiil,Ai)

— sum of weights (Shi and Malik, 2000) :

_ wk Ccut(AiA)
Ncut(A,, ...Ak) = X ()

* Optimizing these functions is NP-hard

e Spectral Clustering provides solution to a relaxed
version of the above

22

Graph Laplacian

* How is the previous useful in Spectral
clustering?

D Wit~
_ZU 1W11fi —ZZU lwufxf1+zlj 1Wllfl'2

Z df?—2 Z wof f, +Z 4

i,j=1 i,j=1

=2 (Z:jzldufz - UZ:I ijfifj)

=2(f'Df — fTWf) = 2fT(D — W)f = 2fTLf
» f:asingle vector with the cluster assignments of the vertices
* L=D-W : the Laplacian of a graph

23

Properties of L

*Lis
* Symmetric
* Positive
* Semi-definite
* The smallest eigenvalue of Lis O
* The corresponding eigenvector is 1

* L has n non-negative, real valued eigenvalues
¢ O=/11S/12S"'S/1n

Two Way Cut from the Laplacian

® We could solve minf'Lf where f € {—1,1}"

B NP-Hard for discrete cluster assignments

® Relax the constraint to f € R*:
min fTLf subject to f'f=n

B The solution to this problem is given by:

e (Rayleigh-Ritz Theorem) the eigenvector corresponding
to smallest eigenvalue: 0 and the corresponding
eigenvector (full of 1s) offers no information

B We use the second eigenvector as an
approximation

e f>0 the vertex belongs to one cluster, fi<0 to the other

25

Adjacency Matrix

a2t

03

0.25

0.2

0.15

0.1

0.05

2nd Eigenvector

50

100

150

200

Multi-Way Graph Partition

* The cluster assignment is given by the smallest k
eigenvectors of L

* The real values need to be converted to cluster
assignments
* We use k-means to cluster the rows
* We can substitute L with L,

[R
eigenvectors K-means on
[A2rhn] | . the rows
< >)
Each row
represents a
(ARLiln | Y, vertex

27

Graph clustering - Modularity based

methods
 Modularity

Q _IZ(AU - kikjj 5(C,.,Cj)

2m* 2m
where
* Ais the adjacency matrix
* ki, ki the degrees of nodes i and j respectively
* mis the number of edges
* Ciis the community of node i

e §(.) is the Kronecker function: 1 if both nodes i and j belong on the
same community (Ci = Cj), 0 otherwise

[Newman and Girvan ‘04], [Newman ‘06]

Clustering algorithms for community
detection

* Louvain: baseline/frame of reference.

 starts each node as a single cluster and hierarchically joins the clusters while trying to optimize a clustering quality
function (modularity).

* Unfortunately, as we will see in practice, it creates some very large clusters and it does not offer overlapping
clusters.

* Markov Clustering — MCL

* main intuition: expands and inflates a transition matrix iteratively until it converges.

* resulting matrix contains a graph of various connected components which are perceived as clusters.

» does not support overlapping clusters), this can be a very demanding algorithm in resources in the Spark
implementation as it requires transition matrix multiplications. Currently our experiment with MCL on Spark has
shown a significantly low efficiency.

* Label Propagation

* very efficient algorithm with many variations.

» Each node starts with its own cluster/label and messages its own label to its neighbors.

* nodes calculate their new label as an aggregation of the received messages.

* labels converge or after a fixed number of iterations.

Design princliples of our Hybrid algorithm

* Produce overlapping clusters
* Constrain the size of the cluster

1 Size vs modularity at 10%
18-2 y ’ Size vs modularity 0.3 mu 0.2 sig
10
0.2
05
;; & 015
0 -
E 0.0 S é
- 201
05
1.0 P 4
" 4
—1 ’\ = T T T T T T T T T T T
0.0 0.2 04 0.6 0.8 0 1 2 3 4 5 6
Cluster Size 1 le6

Louvain Hybrid a-Igo-rithm

30

Conclusions

* Use graph mininng (kernels and clustering) to explore fraud detection
in graph of payments
* Encouraging results for classification
* Challenges:
* generate clusters of controlled size and then predict fraud.

* Huge volumes
* Unkown fraud (unsupervised learning — autoencoders...?)

THANK YOU!!

Michalis Vazirgiannis

https://tinyurl.com/vv69dk8

Acknowledgements
C. Giatsidis, G. Nikolentzos, C. Wu, N. Steenfat, Y. Siglidis

https://tinyurl.com/vv69dk8

