

Data Science & Mining group

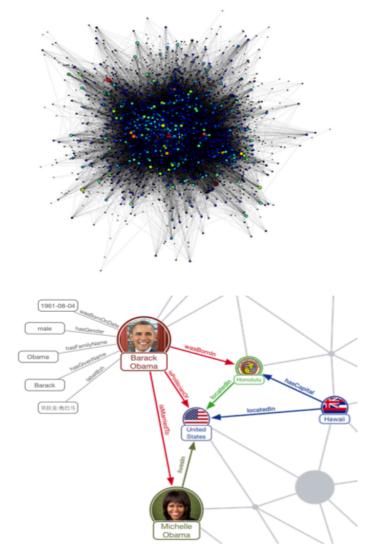
LIX @ Ecole Polytechnique & AUEB

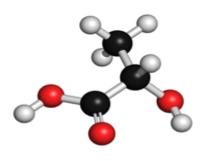
Graph Mining for fraud detection

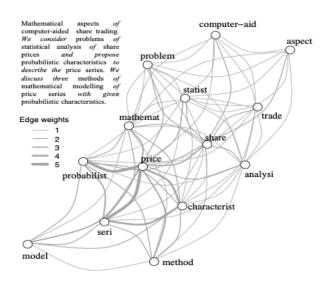
Michalis Vazirgiannis

http://www.lix.polytechnique.fr/dascim/

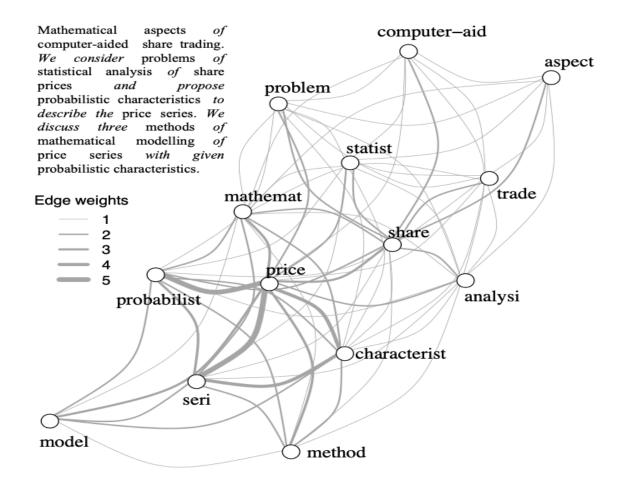
Graphs are everywhere







Motivation - Text Categorization



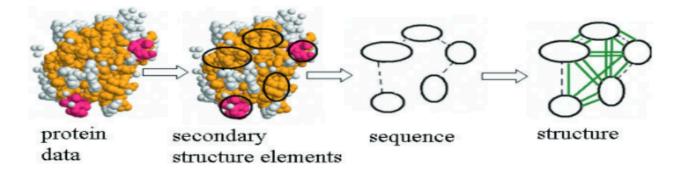
Given a text, create a graph where

- vertices correpond to terms
- two terms are linked to each other if they co-occur within a fixed-size sliding window

Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

- structure
- sequence
- chemical properties



Use graph kernels to

- measure structural similarity between proteins
- predict the function of proteins

Borgwardt et al. "Protein function prediction via graph kernels". Bioinformatics 21

Motivation - Malware Detection

Given a computer program, create its control flow graph

```
processed pages.append(processed page)
        visited += 1
        links = extract links(html code)
        for link in links:
           if link not in visited links:
                links to visit.append(link)
    return create vocabulary(processed pages)
def parse page(html code):
    punct = re.compile(r'([^A-Za-z0-9])')
    soup = BeautifulSoup(html code, 'html.parser')
   text = soup.get text()
   processed text = punct.sub(" ", text)
    tokens = processed text.split()
   tokens = [token.lower() for token in tokens]
    return tokens
def create vocabulary(processed pages):
    vocabulary = \{\}
    for processed page in processed pages:
        for token in processed page:
            if token in vocabulary:
                vocabulary[token] += 1
            else:
                vocabulary[token] = 1
    return vocabulary
```

Compare the control flow graph of the problem against the set of control flow graphs of known malware

If it contains a subgraph isomporphic to these graphs ightarrow malicious code inside the program

Gascon et al. "Structural detection of android malware using embedded call graphs". In AlSec'13

Machine Learning on Graphs

Node classification

 given a graph with labels on some nodes, provide a high quality labeling for the rest of the nodes

Graph clustering

 given a graph, group its vertices into clusters taking into account its edge structure in such a way that there are many edges within each cluster and relatively few between the clusters

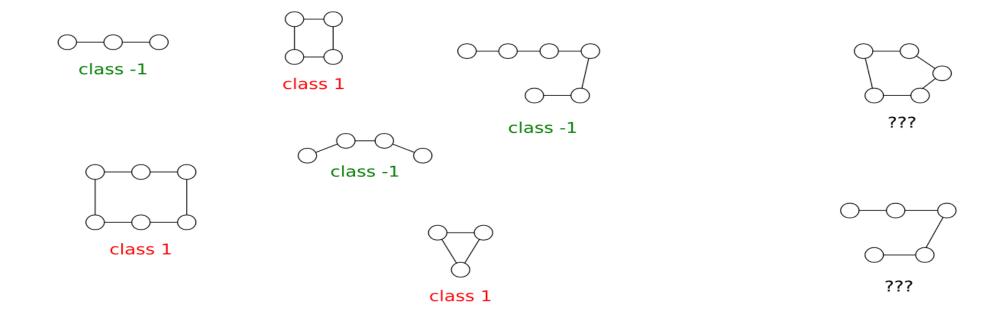
Link Prediction

given a pair of vertices, predict if they should be linked with an edge

Graph classification

 given a set of graphs with known class labels for some of them, decide to which class the rest of the graphs belong

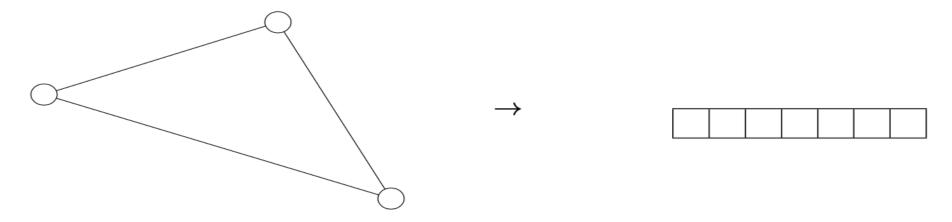
Graph Classification



- ullet Input data $G \in \mathcal{X}$
- Output $y \in \{-1, 1\}$
- Training set $\mathcal{D} = \{(G_1, y_1), \dots, (G_n, y_n)\}$
- Goal: estimate a function $f: \mathcal{X} \to \mathbb{R}$ to predict y from f(x)

Graphs to vectors - kernels

- To analyze and extract knowledge from graphs, one needs to perform machine learning tasks
- Most machine learning algorithms require the input to be represented as a fixed-length feature vector
- There is no straightforward way to transform graphs to such a representation

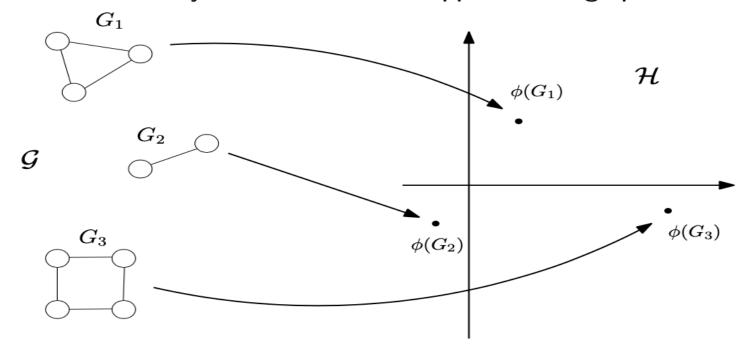


Graph Kernels

Definition (Graph Kernel)

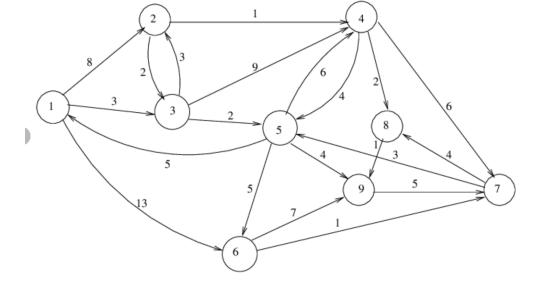
A graph kernel $k: \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ is a kernel function over a set of graphs \mathcal{G}

- It is equivalent to an inner product of the embeddings $\phi:\mathcal{X}\to\mathcal{H}$ of a pair of graphs into a Hilbert space
- Makes the whole family of kernel methods applicable to graphs



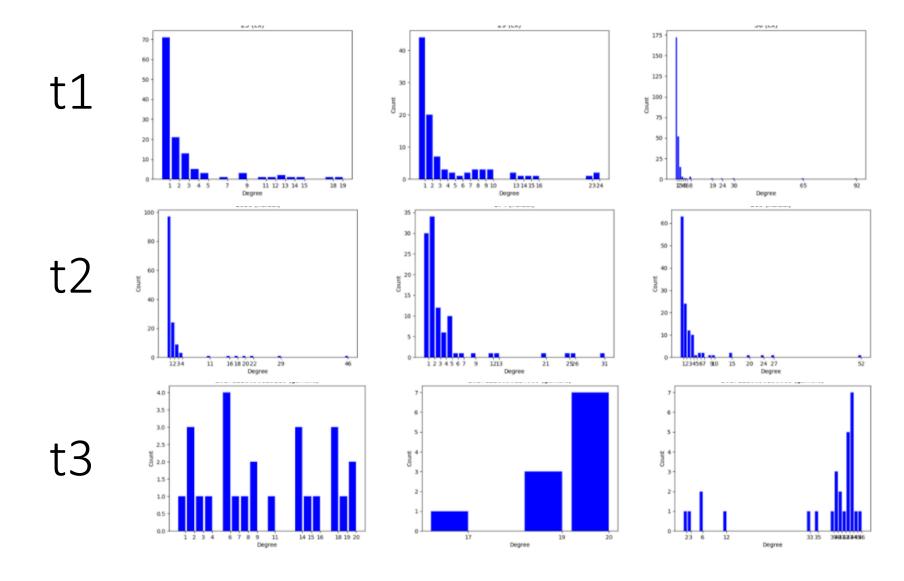
Fraud in graph of payments

- graphs from transaction data from industry X
- nodes represent users
- edges the sum of transactions in a period of time.
- Supervised fraud communities of types t1, t2,t3
- Fraudulent nodes or communities have similar structural patterns



- Data set:
 - 32 fraud communities (6 t1, 6 t2, 20 t3) ~ 3K nodes
 - a sample of the user network (containing those communities) ~ 15M nodes, and ~22M edges.
 - Each fraud node in a fraud community is considered a ground-truth fraudster.
- Goal is to find (likely) fraudsters in the network.

Degree distribution in the three fraud classes



Graph Kernel Based fraud exploration

- Fraudulent graphs: 32 directed graphs labeled as fraud with three different types: "t1", "t2", "t3". Each node in every graph corresponds to a fraud account. edges between nodes represent transactions.
- two attributes: one is total transaction volume, another is the number of transactions.
- Normal graphs: 201 graphs randomly sampled from the complete network which are very unlikely to contain fraudsters.
- Capitalise on graph kernels for the similarity computations

Fraud in graphs

Compared the four categories of graphs – t1,t2,t3 and a randomly sampled non-fraud
 with respect xto a variety of graph metrics.

Observations:

- t1 and t2 are similar in terms of graph topology while t3 is quite different
- t3 graphs contain fewer nodes but are denser
- t3 subgraphs contain much fewer SCCs, as opposed to t1, t2!
- money flow in t1, t2 graphs are mostly unidirectional (whereas in t3 it's multidirectional).
- However, in terms of transaction sums, t3 and t2 are actually more similar than t2 and t1!

Shortest path kernel for fraud graph similarity

Compares the length of shortest-paths of two graphs

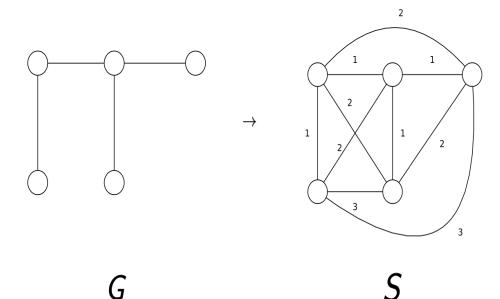
- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

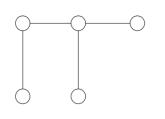
- Compute the shortest-paths between all pairs of vertices of the input graph G using some algorithm (i. e. Floyd-Warshall)
- ullet Create a shortest-path graph S which contains the same set of nodes as the input graph G
- All nodes which are connected by a walk in G are linked with an edge in S
- Each edge in S is labeled by the shortest distance between its endpoints in G

Floyd-transformation

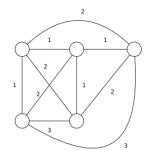


Shortest path kernel – an Example

Floyd-transformations



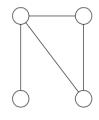
 \Rightarrow



In S_1 we have:

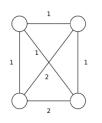
- 4 edges with label 1
- 4 edges with label 2
- 2 edges with label 3

 G_1



 \Rightarrow

 S_1



In S_2 we have:

- 4 edges with label 1
- 2 edges with label 2

 S_2

Hence, the value of the kernel is:

$$k(G_1, G_2) = \sum_{e_1 \in E_1} \sum_{e_2 \in E_2} k_{edge}(e_1, e_2) = 4 \cdot 4 + 4 \cdot 2 = 24$$

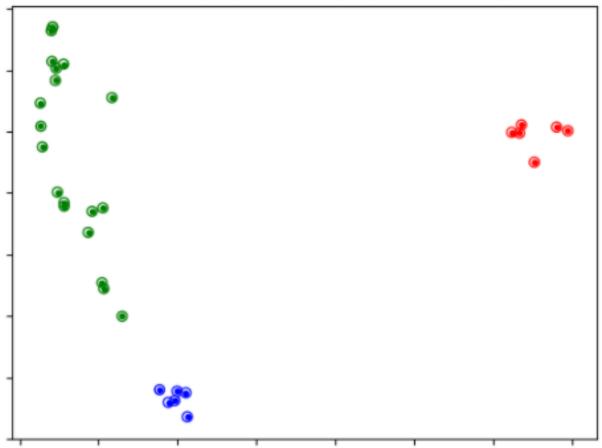
Fraudulent graph prediction

- We compute the kernel matrix of the graphs calculated by shortest-path kernel.
- With kernel PCA, we are able to extract the principle components (2 in our case) of them by simply using a precomputed similarity matrix without knowing the actual embeddings.
- classification is done by SVM

Experiments and Analytics

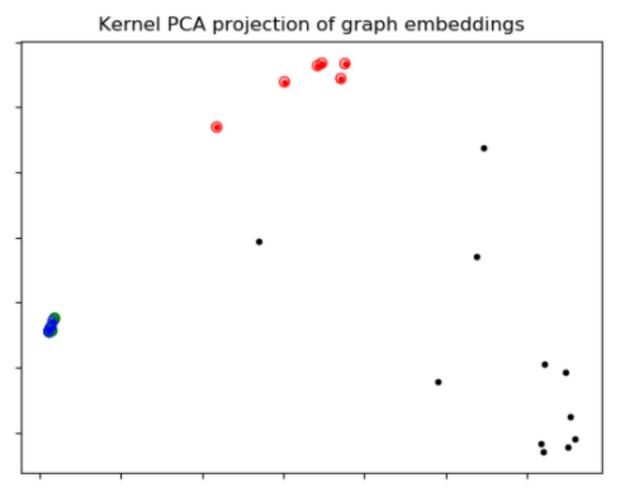
- kernel PCA to visualize our result.
- colours of points represent their types
- colours of circles around the points represent the predictions of our model. The colour-type correspondence is:
- Red: 't1'
- Green: 't3'
- Blue: 't2'
- Black: Non-fraudulent graphs

Kernel PCA projection of graph embeddings



Fraudulent graph projection – normal graphs

 Projection of the three classes in the embedding space (with other random normal graphs)



Onging work: Community mining for fraud detection

- Assume fraudulent community types in huge graphs
- **size**: The size of each subgraph should be of a manageable size. This would potentially assist in human processing of reported subgraphs.
- overlapping clusters: a node may have connectivity to multiple partitions.

Goals

- optimize a clustering algorithm in efficiency
- control the cluster size
- maintain multiple cluster assignments for each node.

A soft introduction to graph clustering

■ Given Graph G=(V,E) undirected:

- Vertex Set $V=\{v_1,...,v_n\}$, Edge e_{ij} between v_i and v_j
 - we assume weight w_{ii}>0 for e_{ii}
- |V| : number of vertices
- $d_i degree of v_i : d_i = \sum_{v_i \in V} w_{ij}$
- $-\nu(V) = \sum_{v_i \in V} d_i$
- for $A \subset V A = V A$
- Given

A, B
$$\subset V \& A \cap B = \emptyset$$
, $w(A, B) = \sum_{v_i \in A, v_j \in B} w_{ij}$

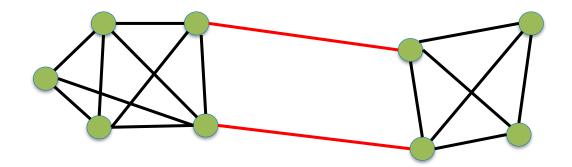
- D : Diagonal matrix where D(i, i) = d_i
- W : Adjacency matrix $W(i,j) = w_{ij}$

Graph-Cut

• For k clusters:

$$-cut(A_1,...,A_k) = 1/2\sum_{i=1}^k w(A_i,\overline{A_i})$$

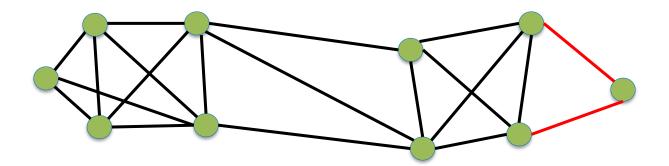
• undirected graph:1/2 we count twice each edge



 Min-cut:Minimize the edges' weight a cluster shares with the rest of the graph

Min-Cut

- Easy for k=2 : Mincut(A₁,A₂)
 - Stoer and Wagner: "A Simple Min-Cut Algorithm"
- In practice one vertex is separated from the rest
 - The algorithm is drawn to outliers



Normalized Graph Cuts

- We can normalize by the size of the cluster (size of sub-graph):
 - number of Vertices (Hagen and Kahng, 1992):

$$Ratiocut(A_1, ...Ak) = \sum_{i=1}^{k} \frac{cut(Ai, A_i)}{|Ai|}$$

– sum of weights (Shi and Malik, 2000) :

$$Ncut(A_1, ...Ak) = \sum_{i=1}^k \frac{cut(Ai, A_i)}{v(A_i)}$$

- Optimizing these functions is NP-hard
- Spectral Clustering provides solution to a relaxed version of the above

Graph Laplacian

How is the previous useful in Spectral clustering?

$$\sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

$$= \sum_{i,j=1}^{n} w_{ij} f_i^2 - 2 \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{i,j=1}^{n} w_{ij} f_j^2$$

$$= \sum_{i,j=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{i,j=1}^{n} d_j f_j^2$$

$$= 2 \left(\sum_{i,j=1}^{n} d_{ii} f_i^2 - \sum_{i,j=1}^{n} w_{ij} f_i f_j \right)$$

$$= 2 \left(f^T D f - f^T W f \right) = 2 f^T (D - W) f = 2 f^T L f$$

- f:a single vector with the cluster assignments of the vertices
- L=D-W: the Laplacian of a graph

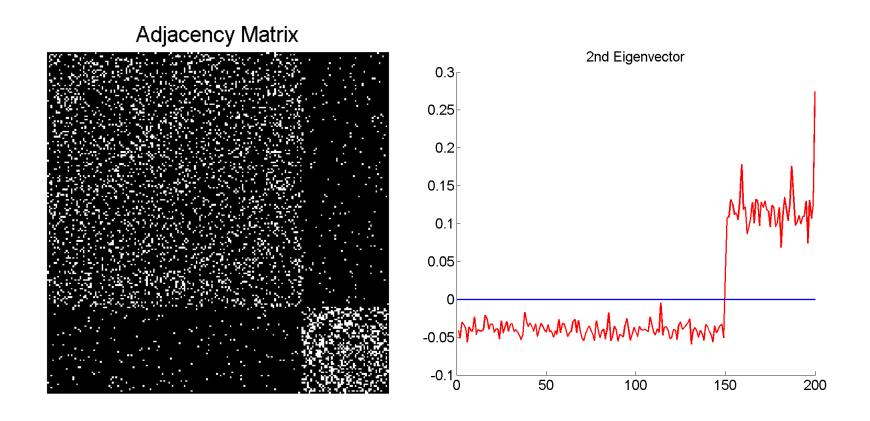
Properties of L

- L is
 - Symmetric
 - Positive
 - Semi-definite
- The smallest eigenvalue of L is 0
 - The corresponding eigenvector is 1
- L has n non-negative, real valued eigenvalues
 - $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Two Way Cut from the Laplacian

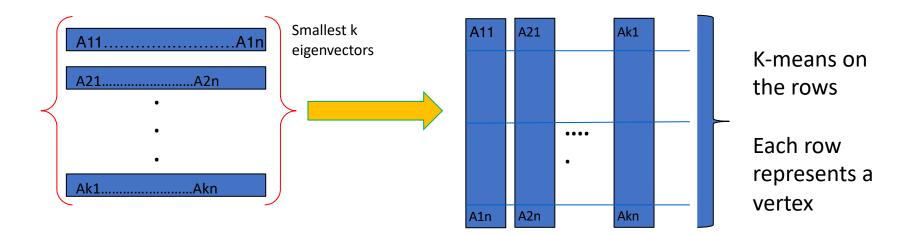
- We could solve $min_f f^T L f$ where $f \in \{-1,1\}^n$
- NP-Hard for discrete cluster assignments
 - Relax the constraint $to f \in R^n$: $min_f f^T L f$ subject to $f^T f = n$
- The solution to this problem is given by:
 - (Rayleigh-Ritz Theorem) the eigenvector corresponding to smallest eigenvalue: 0 and the corresponding eigenvector (full of 1s) offers no information
- We use the second eigenvector as an approximation
 - f_i>0 the vertex belongs to one cluster, fi<0 to the other

Example



Multi-Way Graph Partition

- The cluster assignment is given by the smallest k eigenvectors of L
- The real values need to be converted to cluster assignments
 - We use k-means to cluster the rows
 - We can substitute L with L_{sym}



Graph clustering - Modularity based methods

Modularity

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$

where

- A is the adjacency matrix
- **k**_i, **k**_j the degrees of nodes **i** and **j** respectively
- **m** is the number of edges
- C_i is the community of node i
- $\delta(.)$ is the Kronecker function: 1 if both nodes i and j belong on the same community ($C_i = C_j$), 0 otherwise

Clustering algorithms for community detection

- **Louvain:** baseline/frame of reference.
 - starts each node as a single cluster and hierarchically joins the clusters while trying to optimize a clustering quality function (modularity).
 - Unfortunately, as we will see in practice, it creates some very large clusters and it does not offer overlapping clusters.

Markov Clustering – MCL

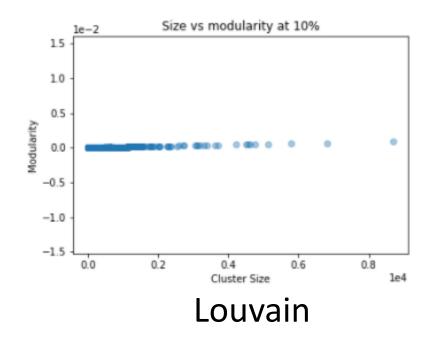
- main intuition: expands and inflates a transition matrix iteratively until it converges.
- resulting matrix contains a graph of various connected components which are perceived as clusters.
- does not support overlapping clusters), this can be a very demanding algorithm in resources in the Spark implementation as it requires transition matrix multiplications. Currently our experiment with MCL on Spark has shown a significantly low efficiency.

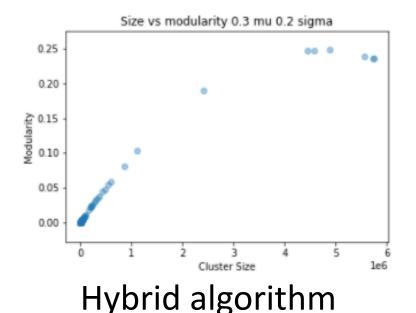
Label Propagation

- very efficient algorithm with many variations.
- Each node starts with its own cluster/label and messages its own label to its neighbors.
- nodes calculate their new label as an aggregation of the received messages.
- labels converge or after a fixed number of iterations.

Design princliples of our Hybrid algorithm

- Produce overlapping clusters
- Constrain the size of the cluster





Conclusions

- Use graph mining (kernels and clustering) to explore fraud detection in graph of payments
- Encouraging results for classification
- Challenges:
 - generate clusters of controlled size and then predict fraud.
 - Huge volumes
 - Unkown fraud (unsupervised learning autoencoders...?)

THANK YOU!!

Michalis Vazirgiannis

https://tinyurl.com/vv69dk8

Acknowledgements

C. Giatsidis, G. Nikolentzos, C. Wu, N. Steenfat, Y. Siglidis