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We respond to this consultation as representatives of a team of researchers studying the 
increased intensity of biological and biomedical data collection, analysis, use, and retention in 
healthcare. We also situate our response in relation to response to growing ethical concerns over 
the development, use, and value of data-intensive research in the biomedical sciences, in addition 
to concerns over the management, use, and analysis of large data sets for the study of common 
diseases. Our comments attempt to move beyond issues of privacy and public interest: instead, 
they are rooted in questions about how new forms of biomedical research face key issues in, and 
enable normative frameworks for, engaging with approaches to health and disease. 

Researchers at the Exeter Centre for the Study of the Life Sciences (Egenis) have been 
studying data practices in biomedicine for over a decade from the points of view of the history, 
philosophy and social studies of science. We also have long-term experience in collaborating 
with both laboratory-based and clinical scientists around strategies for effective data 
dissemination, and we have recently initiated a Data Studies group funded by the ESRC, 
Leverhulme Trust and the European Research Council (www.datastudies.eu). This group is led 
by Dr Sabina Leonelli, Associate Director of Egenis, who has ten years of research experience 
on data dissemination and the development of data infrastructure in biology and biomedicine. Dr 
Leonelli’s work has focused on the ways in which genomic data are classified in order to be re-
used in biological and clinical settings (e.g. Leonelli 2012a/b and 2013); and on the sustainability 
of the infrastructures used to that purpose particularly within plant science (e.g. Bastow and 
Leonelli 2010, Leonelli et al 2013). In 2013, Egenis was able to employ Dr Nadine Levin, whose 
recently concluded PhD research is based on cutting-edge ethnographic research on data 
practices within the Computational and Systems Medicine (CSM) laboratory at Imperial College 
London, as well as on interviews with members of the wider metabolomics community within 
the United Kingdom (e.g. Levin forthcoming, Levin under review).1 

                                                
1 The CSM represents one of the pioneering centres for the development of metabolomics methods and applications 
to the study of health and disease.  Drawing on the network of research hospitals that exist in the Imperial College 
Healthcare NHS Trust, the CSM has established a variety of collaborations with health researchers and clinical 
practitioners, to advance the implementation of translational metabolomics research.  Examples of CMS 
initiatives—which are being spearheaded by Professor Jeremy Nicholson (the Head of the Department of Surgery 
and Cancer)—include “surgical metabonomics,” the development of the National Phenome Centre as one of the 



General	  Questions	  

1.	   Do	  biomedical	  data	  have	  special	  significance	  

Is it useful (or even possible) to define biomedical data as a distinct class of data?  If it is, what 
are the practical and ethical implications of different ways of defining this class? 

We do not think it useful to define biomedical data as a distinct class of data, for two 
reasons: (1) most problems plaguing the dissemination and integration of biomedical data bear 
similarities to problems experience in other areas of research, and thus considering data practices 
across the sciences is a better way to identify problems and possible solutions (e.g. the Royal 
Society report from 2012); (2) within biomedicine, different types of data are created through 
different technologies and different cultures of professional training, and as such entail different 
notions of what constitutes biomedical research and its objects of investigation. 

Indeed, despite the increasing importance of big data and related technologies within 
biomedical research, the definition of “data” remains elusive and poorly understood (see 
Borgman, 2012). In metabolomics research, data exist as extremely large datasets or matrices of 
biochemical information collected from nuclear magnetic resonance (NMR) or mass 
spectrometry (MS) experiments, which are subsequently analyzed with multivariate statistical 
and machine learning techniques. Many researchers have questioned the very idea that these data 
can be disseminated outside of its original production context, as metabolomic data are very 
sensitive to environmental conditions and thus potentially unreliable when transferred across 
experimental contexts (Leonelli 2012a, Leonelli et al 2013). This type of data is also very 
different from that which is collected as a routine part of clinical work, which often exists as 
reports, lists of the numerical results of laboratory tests, or collections of (sometimes digitized) 
images (Levin forthcoming).  

As an example, metabolomics researchers collaborating with clinicians often spoke of the 
“gulf of understanding” that existed between them.  This originated from struggles not only with 
different ways of carrying out research—of learning how to manipulate samples in laboratory 
environments versus interact with patients in hospital settings, or of learning how to balance the 
time demands of clinical work and laboratory research—but also with struggles on a 
fundamental level, on behalf of the clinicians, to understand the concepts, uses, and values 
underlying the data produced in metabolomics experiments.   Because clinicians were not usually 
trained in the methods and ideas of biochemistry or data analysis, they struggled to understand 
how to interpret the graphs produced during metabolomics experiments, or to envision how 
metabolomics data could be used to assess patients in clinical practice.  While metabolomics data 
was useful for showing the biochemical composition of tissues or for producing molecular 
signatures of disease, its use for diagnosing or treating disease was less clear.  Thus, 
metabolomics and clinical data had fundamentally different forms/formats, roles, and meanings. 

Several initiative under the heading of “translational research” or “personalized 
medicine” initiatives have attempted to integrate such different types of data, sometimes 
                                                                                                                                                       
legacies of the London 2012 Olympics, and clinical trials involving the “intelligent knife” (see Kinross et al., 2011; 
Nicholson et al., 2012; Mirnezami et al., 2012).  Many of these initiatives are so current that they still remain 
relatively undocumented in the publication record. 



resulting in failure. A notable initiative has been the Cancer Biomedical Informatics Grid 
(caBIG), created in 2003 to function as a portal linking together datasets gathered by the research 
institutions and patient care centers under the purview of National Cancer Institute (NCI). caBIG 
was heavily critiqued for underestimating the complexities associated to integrating different 
types of datasets and disseminating them to a wide variety of stakeholders, and this multi-
million-dollar infrastructure was eventually closed down in 2013 (Leonelli 2013). Examples such 
as this show that the interlinking of different types of data requires more than the 
development of databases, standards, or computer algorithms for analysis.  It also requires  

(1) Interdisciplinary training for and interaction between various types of researchers 
and clinical practitioners (to familiarize clinicians, for example, with multivariate 
statistical and machine learning techniques, and to familiarize researchers, vice versa, 
with the complex process of patient diagnosis and treatment) 

(2) New types of user-friendly data analysis interfaces and visualizations of complex 
data, which enable researchers and clinicians to access and make sense of data produced 
by different types of experts 

(3) Consideration for ways to integrate and compare the intuitive, judgment-based, and 
often qualitative aspects of patient care with the quantitative, information-based 
measurements of research.  Here, it will be particularly important not to discount the 
value of more “subjective” forms of clinical knowledge and practice, and to remember—
as scholars in social and historical studies of science have established—that biomedical 
research itself is never fully “objective” (see Latour and Woolgar, 1986; Daston and 
Galison, 2007). 

 

How are changes in the scope of the data in use providing meaningful insights into individual 
biological variation and health? 

The notion that data can be used to understand and treat individual biological variation 
and health has arisen in the context of recent attempts to develop “personalized medicine” or 
“stratified medicine,” the notion that medical care can be tailored to individual or small groups of 
persons and instances of disease through data-intensive research. To some extent, medical care 
has always been personalized. Throughout the 20th century, physicians practiced patient-centered 
care and used the “art” of clinical judgment, avoiding a one-size-fits-all approach to medicine. 
What is new, therefore, about modern forms of personalized medicine is an emphasis on the use 
and value of large volumes and interlinked kinds of data for finding health patterns and 
maximizing biomedical knowledge. 

 Despite a discursive emphasis on the treatment of individuals (for example, with genetic 
tests for breast cancer), efforts to develop personalized or stratified medicine are fundamentally 
concerned with comparing groups of individuals.  They are thus centrally concerned with 
populations, rather than with individuals. This is particularly evident when considering how 
personalized medicine is intricately tied to the establishment of biobanks and databases for the 
storage of samples and data: when taken in a wider perspective, efforts to study individuals are 
always tied to efforts to study populations (see Raman and Tutton, 2010; Foucault, 1990).  
Though this is not necessarily problematic, it does prompt us to consider to what extent efforts to 
develop personalized or stratified medicine can truly provide insight into, or impact the diagnosis 



and treatment of, individual biological variation and health.  Such efforts to study individuals are 
intensely immersed in and predicated upon the use of complex statistics: these are not concerned 
with individuals per se, but rather with defining or predicting the range of biological or health 
values that an individual is statistically likely to display.  Though studies recognizing the highly 
individualized nature of disease are becoming increasingly prominent—through, for example, 
“n=1” clinical trials (van der Greef et al., 2006) or studies of the “patient journey” (Kinross et al., 
2011)—the outcome of personalized medicine is still predominantly about statistical likelihood, 
chance, and variance.   

 Data-intensive methods for development personalized medicine can come into 
contrast and conflict with the inherently personalized practice of medical diagnosis and 
treatment by clinical practitioners.  In the assessment of patients, practitioners rely on a 
combination of technological measurements (such as blood tests or imaging), but also subjective 
judgments building on years of training and experience in assessing patients.  While such 
judgments are not foolproof or without problems, they are able at times to assess the course of a 
patient’s illness or treatment in ways that algorithms or statistics-based approaches cannot.  
Because clinicians are able to draw upon information that is not easily quantified—for example, 
the pallor of a patient’s skin, the broad picture of how a patient has changed over time—they 
have additional capacities that data-intensive approaches to personalized medicine do not.  Thus, 
efforts to develop increasingly complex and personalized models of disease with the aid of 
engineering principles remain problematic, in that it is difficult to know whether the 
configuration of patients into a series of measurable and objective variables captures those 
elements of health that enable clinical practitioners to effectively carry out the diagnosis and 
treatment of disease. 

 Statistics-based approaches to personalized medicine do not necessarily make it 
easier for practicing clinicians to treat individual patients.  If personalized algorithms can 
provide a percent chance or likelihood that, for example, a patient will require a liver transplant, 
such information is useful for understanding how to manage the burden of disease in 
populations, but not so useful for determining the care of patients who display unique 
combinations of symptoms or require unique types of treatment.  While molecular and statistical 
approaches to personalized medicine are seen as more objective and accurate, they can prove 
unhelpful in the everyday practice of medical care, in which patients display individual cases of 
and trajectories for disease.  Thus, as researchers allocate time and resources to the development 
of post-genomic and molecular approaches to personalized medicine, they must consider how 
their methods for understanding disease can place priority on the health of populations over 
individuals.  

 

3.	   What	  is	  the	  impact	  of	  developments	  in	  data	  science	  and	  information	  
technology	  

To what extent and in what ways has the availability of biomedical data and new techniques 
for analyzing them affected the way in which biomedical research is designed? 

The advances in data science and technology, which have given rise to the increased 
availability and use of large volumes of data in biomedicine, have also change the types of 



questions and theoretical approaches used to ask questions about health and disease.  With the 
rise of “big data” approaches to biology, which are paralleled in other aspects of society by big 
data approaches to business (Google and Facebook) and government, there has been an increased 
focus on the collection and storage of data.  Efforts have been directed at the development of 
data mining, statistical and machine learning techniques, and visualizations to aggregate and 
collate the various types of data that exist for analysis.  With such an emphasis on the collection 
of data, researchers have increasingly begun to conduct “hypothesis generating” rather than 
“hypothesis testing” type of work.  They have, in other words, looked for the data to give rise to 
new areas and questions for investigation, rather than seeking to collect data in response to 
particular questions or lines of inquiry.  Such hypothesis generating research is also supported by 
the re-use of data beyond the original scope of its collection, as researchers seek to understand 
what insights will “emerge” from data. 

As evident from previous phases of the history of biology and medicine (e.g. Leonelli 
2012b), these approaches are not new, and yet they have come to prominence over the last 
decade for their capacity to yield surprising findings by suggesting correlations between 
previously unconsidered or unlinked facets of life. This way of conducting research can be 
extremely effective within medicine, where testing the efficacy of a treatment does not 
necessarily involve understanding the underlying biological processes. At the same time, the 
development of personalized or precision medicine does increasingly require some 
understanding of the underlying causes or mechanisms for such correlations. This is a major 
challenge for data-intensive research, which in itself is not enough to investigate the 
biological processes and structures responsible for a given pattern.  

For instance, metabolomics researchers frequently emphasize the recurring challenge not 
in generating, but rather in making sense of statistical and molecular data in relation to disease 
processes and outcomes, and particularly in relation to specific genes, metabolic pathways, or 
bodily systems. This is because the statistical patterns observed in metabolomics data often have 
no inherent or pre-existing connections to clinical outcomes.  Researchers emphasize their 
difficulties in  

(1) interpreting common metabolites (small metabolic molecules) that recurred across 
multiple experiments 

(2) determining the physical or biological origins of metabolites 
(3) assessing the range of metabolites that particular technologies or techniques were 

capable of detecting 
(4) determining the variability of metabolites within particular samples. 

 

What are the main interests and incentives driving advances in data science and technology 
that can be applied to biomedical data?  What are the main barriers to development and 
innovation? 

One of the main barriers to advances in data science and technology, and in particular those that 
are focused on hypothesis generating or data mining approaches, is linking the ways in which 
data are ‘packaged’ for dissemination (through databases and other infrastructures) with the ways 
in which they are interpreted and re-used across different research contexts. Currently, large-
scale efforts to disseminate data are relatively separate from efforts to generate and 



interpret data in biology and biomedicine: different groups of researchers are involved, who 
bring different types of expertise that are not always easy to integrate (Leonelli 2013). Further, 
database curators are struggling with the challenge of assessing and accurately portraying 
data production practices across biological and clinical research, with important 
consequences for how efficiently data stored in databases are retrieved and interpreted (Leonelli 
2012a). There are significant labor and time costs in organizing and assessing the meaning 
underling data-intensive research.  Future research agendas and funding initiatives will need to 
consider how researchers can be trained not only in data analysis techniques, but also with 
the skills required to make sense of the large volumes of data and the statistical patterns 
created with such techniques.  This will also require a serious considering for how automated 
forms of data analysis must be paired with the skills and abilities of trained professionals. 

 

4.	   What	  are	  the	  opportunities	  for,	  and	  the	  impacts	  of,	  the	  use	  of	  linked	  
biomedical	  data	  in	  research?	  

To what extent do the kinds of collaborations required for data-driven (eg international or 
multi-centre collaborations) generate new ethical and social issues and questions to those in 
other forms of research? 

The ability to create and analyze large and complex digital data sets not only relies on the 
establishment of biobanks, but also on the establishment of various community databases and 
less formalized structures for the sharing of data.  While a number of well-document ethical and 
social issues surround the storage, availability, sharing, and use of biological materials and data 
within biobanks, such dynamics are not well understood in relation to databases and informal 
networks of sharing. As reported by one of us, “Many scientists and science funders view 
databases as crucial tools to handle the vast amount of molecular data produced by technologies 
such as automated sequencing and microarray experiments (often referred to as ‘big data’), and 
getting them to travel across the world quickly and easily” (Leonelli, 2013).  However, key 
issues arise from the variety of data used, the lack of standards available and the lack of 
clarity as to who should provide the structures and support for sharing (Bastow and 
Leonelli, 2010; Leonelli et al., 2013). 

The increasingly interlinked and collaborative nature of data-driven science also 
encounters issues with the tensions is places upon researchers, communities, and institutions, in 
encouraging them to share resources and data. Researchers must constantly evaluate how to 
advance their own careers while also advancing the overall gains in knowledge to the community 
and society.  This tension raises concerns about what types of incentives or disincentives for 
sharing data, resources, or knowledge might be built into the current systems of scientific 
research. This is particular important when considering the current mechanisms by which 
people receive formal credit for the work they have carried out.  While long-standing 
mechanisms exist for awarding and assessing citations for publications, such mechanisms have 
not yet been established with regards to the sharing of data and biological resources.  Such issues 
are increasingly important in the context of the “Open Access” and “Open Data” movements, 
which encourage—and provide norms for—the sharing of publications and data, respectively.  
For the interlinked and collaborative data-driven research to improve health outcomes, we must 
consider the incentives, structures, and modes of credit—for example, the establishment of data 



citation indices, community standards and databases—that might encourage the wider sharing of 
biological data and resources. 

 

5.	   What	  are	  the	  opportunities	  for,	  and	  the	  impacts	  of,	  data	  linking	  in	  medical	  
practice	  

What are the main hopes and expectations for medical practice associated with increased use 
of linked electronic data?  What are the main concerns or fears? 

Two key hopes for the implementation of increased volumes and linked types of data in 
medical practice, as espoused by efforts to develop “systems medicine” (Auffray et al., 2009) 
and “precision medicine” (Committee on a Framework for Development a New Taxonomy of 
Disease, 2011), are that 

1) The “subjectivity” of current medical practice can be overcome with the use of data and 
molecular technologies.  It is hoped that this will be accomplished by replacing a reliance 
on symptom reported with observations and measurements of molecular characteristics of 
biology, as well as replacing the self-reporting of patients with the direct measurement or 
surveillance of their bodies (for example, via biological tracking technologies or the 
Quantified Self Movement). 

2) The improved allocation of resources and efficacy care can be achieved by stratifying 
patients into different disease phenotypes through multiple stages of their treatment or 
“patient journey” through hospital settings (Kinross et al., 2011) 

 

Summarising our points above, key concerns and fears involve: 
 

• The difficulties in developing and implementing adequate databases and data 
infrastructure to support effective inferences from data 

• The danger of excessive reliance on data-intensive methods, who are excellent tools 
to spot new correlations but can hardly be relied upon to unveil underlying causes 
of disease 

• The difficulties in training clinical researchers to correctly implement statistical 
analyses of data, as well as understand data provenance so as not to misinterpret 
results 

• The difficulties in widely disseminating certain kinds of data, such as metabolomic 
data, in the first place 

• The danger of underestimating physicians’ assessments in favor of population-level 
statistical evaluations, which may not be equally effective in the treatment of 
individual patients  
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