Professor Stefano Pagliara

Professor Stefano Pagliara

Professor
Biosciences

About me:

Stefano Pagliara studied Physics at the University of Salento (Italy) where he also obtained a PhD in Nanoscience applying physical and engineering tools to biological problems such as biomineralization. Stefano then moved to the the Cavendish Laboratory, University of Cambridge, where he carried out post-dotoral research on membrane transport. In 2013 Stefano obtained a Leverlhulme Early Career Fellowship to carry out research on antibiotic accumulation in individual bacteria. In 2014 he moved to the University of Exeter where he is now Professor of Membrane Transport and leads a group based in the Living Systems Institute and working on membrane transport in antimicrobial resistance.

 

Single-cell biology

We have recently begun to understand that there are important differences between cells which have the same genetic make-up. Therefore, we need to study the behaviour of thousands individual cells within a population, this requiring the development of single-cell technologies including novel microfluidic and imaging tools. Our research group uses these tools to understanding how individual cells within a population specialise to perform specific functions with an emphasis on their capabilities to exchange molecules with their environment and with other cells. Our aims are:

1. To determine the environmental factors and the molecular mechanisms underlying heterogeneity in molecular uptake in unicellular organisms such as bacteria, fungi and mammalian cells.

2. To elucidate the mechanisms underlying survival to antimicrobials of subsets within clonal microbial populations.

3. To understand the dynamics of inter-species interactions at the scale of the individual cell, particularly between the host and its pathogen as well as between symbionts.

4. To investigate how ageing shapes the composition of clonal microbial populations.


Interests:

1. Membrane transport

Molecular exchange across cellular membranes is at the basis of life and has been investigated via ensemble measurements. Our research sheds new light on the heterogeneity of molecular uptake within populations of bacteria with the same genetic makeup which is paramount for improving drug therapy and the yield of food production.

 

2. Host-pathogen interactions

Individual cells interact with their neighbours in a variety of different ways both beneficial and detrimental for the wellbeing. Our research focuses on the study of the relationship between bacteria and their bacteriophage which is relevant for next generation phage therapy as well as the interaction between microalgae and bacteria and viruses associated to their surface which is crucial for achieving a better understanding and a tighter control of algal blooms.

 

3. Drug efficacy

Antibiotics play a fundamental role in modern medicine, but drug-resistant pathogens now exist for all known antibiotics. In combination with a major void in antibiotic discovery, this has led to predictions that bacterial infections will cause 10 million premature deaths annually by 2050. Our research tackle this crucial societal issue by quantifying both the uptake of existing and novel drugs in individual bacterial pathogen as well as the efficacy of such drugs in completely clearing out a bacterial infection.

 

4. Ageing

Ageing is the decline in reproductive success and survival with advancing age and has been well documented across a diverse range of multicellular organisms where it is thought to arise from the progressive accumulation of defects. Our research investigates the mechanisms underlying the natural course of ageing in unicellular organisms, such as bacteria, in the absence of external stressors.

 

View full profile