Recent Projects

This Knowledge Transfer Partnership (KTP) project, 'A Digital Twin for Condition Assessment and Failure Prediction in Water Pipes', was a collaboration between the University of Exeter’s Centre for Water Systems and water technology firm Datatecnics. This innovative project aimed to enhance the monitoring and management of water pipes by developing 'Ground Truth', a digital twin designed to track pipe deterioration under various environmental and operational conditions. The project combined physical modelling of soil-pipe systems with advanced numerical models of buried pipes, considering a range of scenarios that impact the performance of both plastic and metallic pipes. 

A significant focus was the use of machine learning techniques to predict the mechanical behaviour of pipes over time, allowing for more accurate assessments of their condition and potential failures. The outcomes of the KTP resulted in the creation of a failure prediction and pipe condition assessment tool, developed for Datatecnics, which is now employed by multiple water utilities across the UK and Europe. This innovative approach improves the resilience of water infrastructure and contributes to more efficient, cost-effective maintenance practices across the sector.

This successful KTP has already demonstrated tangible business impacts, including improved operational efficiency and sustainability for water companies. Moreover, Ground Truth recently earned the prestigious Exeter Knowledge Exchange Award 2024 in the Bright Future Award: Early Career Research Impact category, showcasing the real-world significance of the work.

Exeter blog: High flying engineer develops intelligent new system for the water sector

YouTube video: Ground Truth: Simulating Performance of Underground Water Mains with AI and Sensors

Further information:

This KTP project was funded by Innovate UK, to support business-led innovation and access to university expertise. The KTP Associate was Milad Latifi. The University of Exeter’s academic supervisors were Prof Raziyeh Farmani, Professor of Water Engineering, and Prof Akbar Javadi, Professor of Geotechnical Engineering. 

Headquartered in Media City, Manchester, water technology firm Datatecnics builds condition assessment tools and failure prediction models for clean and wastewater pipes, helping utilities improve water systems management.

Application of innovative statistical models to automate process control tools that manage water pipeline infrastructure.

The aqua3S project aims to create strategies and methods that will enable water facilities to easily integrate solutions regarding water safety, through a combination of novel technologies in water safety and the standardisation of existing sensor technologies.

Exposure of citizens to potential disasters has led to vulnerable societies that require risk reduction measures. Drinking water is one of the main risk sources when its safety and security are not ensured.

aqua3S combines novel technologies in water safety and security, aiming to standardize existing sensor technologies complemented by state-of-the-art detection mechanisms. aqua3S can propose innovative solutions to water facilities and responsible authorities in order to detect and tackle water-related crises in a timely manner.

On the one hand, sensor networks are deployed in water supply networks and sources, supported by complex sensors for enhanced detection; on the other hand, sensor measurements are supported by videos from Unmanned Aerial Vehicles (UAVs), satellite images and social media observations from citizens that report low-quality water in their area (e.g. by colorization); introducing this way a bottom-up approach which raises social awareness and, also, promotes interactive knowledge sharing.

The proposed technical solution is designed to offer a very effective detection system, taking into account the cost of the aqua3S platform and target at a very high return-on-investment ratio.

The main strategy for the integration of aqua3S’ solution into the market is designed on the standardization of the proposed technologies and the project’s secure platform.

Visit the aqua3s website for further information.

View diagram of the Aqua3s project

So far, individual water companies have been able to use open data and Artificial Intelligence to gradually improve their performance in delivering services. Through this initiative, Severn Trent are leading this cross-sector coalition to go much further, piloting an autonomous system to monitor an entire waste catchment. By bringing together extensive testing with emerging technologies, this approach can work through huge amounts of data to provide real-time insights to help water companies reduce the risk of flooding and sewerage pollution in a catchment: delivering benefits for both customers and the environment. 

Through this project, the delivery team will be developing a tried and tested blueprint for how this approach can be scaled across the UK. More broadly, the team hope that this project can be a catalyst for wider use of AI in the water sector, building trust and demonstrating the value of this important technology. 

Led by: Severn Trent Water

Partners: South West Water, Southern Water, Thames Water, Hafren Dyfrdwy Water, Northumbrian Water, Microsoft, Rockwell, British Telecom, Blackburn-Starling, 8power, National Cyber Security Centre, University of Exeter.

Funder: Ofwat Water Breakthrough Challenge

For further information, please visit the Ofwat website

The aim of this Knowledge Transfer Partnership (KTP) is to develop and embed a toolset utilising Bayesian Optimisation and CFD techniques in order to enable optimisation of product function and manufacturability, and accelerate the product development process.

This is the latest part of a long term collaboration between the University of Exeter (Prof Gavin Tabor, Prof Jonathan Fieldsend) and Hydro International Ltd, developing Computational Fluid Dynamics (CFD) and Machine Learning techniques for SUDs product design. Hydro International provides products and services in the water treatment and drainage sectors including wastewater, stormwater and industrial water treatment products, and flow controls for urban drainage systems. The objective of the project is to use Bayesian Optimisation to optimise the separation of particulate waste from water using a cyclone separator very similar in function to a Dyson vacuum cleaner, but for water rather than air. The aim is for the computer to "learn" better designs for the separator trays which are at the heart of the system, providing key new IP for the company as well as a design tool which can be applied to other products in their range.

BRIM is a network that brings together academics, engineers and policy makers to develop a shared, multi-disciplinary vision of how to build resilience into networked risk management for highly complex engineered systems.

The aim of the network was to nurture the development of novel methodologies and tools of building resilience into networked risk management of critical infrastructure systems for identifying tipping points of interdependencies and managing cascade effects of extreme events, in particular those related to extreme weather such as flooding and drought.

This network was by Professor Guangtao Fu at the University of Exeter, supported by Professor Roy Kalawsky at Loughborough University and Dr Monica Rivas Casado at Cranfield University.

Find out more on the main BRIM website or within our bespoke project website.

 

This project aimed to support water management in the Indo-Gangetic Plain (IGP) through interdisciplinary collaboration across sectors, local communities, institutions and academia.

Background

Managing water resources in the Indo-Gangetic Plain (IGP) is challenging because of the basin's uniqueness in scale, it's biophysical complexity and the dynamics of its institutional and socio-economic characteristics. India's green revolution, initiated in the mid-1960s to achieve food security for its growing population, resulted in large-scale environmental change from natural land covers and rainfed cropland to intensively managed agricultural systems. Unmanaged and inefficient water abstraction for irrigation, combined with poorly controlled waste management practices, has severely degraded the quantity and quality of regional water resources and now threatens ecosystem services and human health. Water management in the IGP is challenged by the imbalance between water demand and seasonal availability related the monsoon cycle as well as difficulties in coordinated planning of surface and groundwater resources. A lack of cross-sectorial cooperation leads to competition for scarce water resources, while perverse government subsidies for irrigation water and electricity potentially lead to wastage of resources. Lastly, the basin’s groundwater resources that are, to a large extent, a primary source for irrigation and rural and urban water supply, are independently managed by multiple agencies.

Considering continued economic development and population growth, as well as the impacts of climate change, it is clear that achieving water security in India and especially the IGP is a growing challenge that requires interdisciplinary collaboration across sectors, local communities, institutions and academia. CHANSE, which is funded through the Newton-Bhabha Fund, a joint initiative between UK NERC and Indian Ministry of Earth Sciences, brings together researchers from leading UK and Indian institutions, in partnership with international and local non-governmental organisations, to support water management in the IGP.

Aim and objectives

The main aim of CHANSE is to improve the quantification of the dominant interactions and feedbacks between human activities and the hydrometeorological system of the Indo-Gangetic Plain. The objectives are:

  • To estimate the surface and groundwater availability in the IGP under current and future climates and anthropogenic activities
  • To improve understanding of the spatio-temporal dynamics and feedbacks in the coupled human-natural system of the IGP basin
  • To develop regional predictions of seasonal and subseasonal monsoon rainfall, decadal climate predictions, and regional weather forecast for flood forecasting that will improve water management strategies
  • To identify thresholds in water requirements and desirable surface and groundwater resources to govern sustainable management of coupled water, food and ecological systems in the IGP

CWS contribution

Within CHANSE, the CWS team led by Professor Slobodan Djordjevic and Professor Dragan Savic, are leading the development of an integrated assessment model for the Indo-Gangetic Plain following the System Dynamics approach. This work package will integrate data and models developed within CHANSE in order to perform trend predictions under a range of climate and development scenarios. Ultimately, this tool will enable better informed decision making towards sustainable water management of coupled human and natural systems in the IGP.

In addition, CWS researchers will collaborate with climate experts at IIT Bombay to develop basin to sub-basin scale predictions of seasonal and sub-seasonal monsoon rainfall in the IGP using regional climate models with improved representations of regional characteristics and land surface feedbacks. In particular, CWS will focus on the development of a flood forecasting system for disaster mitigation and water management under weather extremes.

Project partners

  • Imperial College London, UK
  • Indian Institute of Technology Bombay, India
  • University of Exeter, UK
  • Indian Institute of Science Bangalore, India
  • Indian Institute of Tropical Meteorology Pune, India
  • British Geological Survey, UK
  • Ashoka Trust for Research in Ecology and the Environment, India
  • Tilka Manjhi Bhagalpur University, India
  • United Nations Educational, Scientific and Cultural Organization

For further information, see the Centre for Climate Change Research, Indian Institute of Tropical Meterology webpage.

Development of a novel standalone solar-driven agriculture greenhouse desalination that grows its energy and irrigation water.

The aim of this fellowship is to develop novel technologies to facilitate the delivery of smart and resilient water systems.

The aim is to develop analytical tools to analyse big data from smart sensors at household and system levels, so as to identify vulnerabilities and inform infrastructure planning, design, operation and management decisions and thus improve resilience.

This project aims to develop and demonstrate an effective emergency flood planning and management approach based on the synergetic use of on-site, measured information collected by UAS’s with mathematical models for flood modelling, evacuation route planning and dynamic emergency resource allocation.

This project focuses on using UASs to collect and collate pertinent information about an unfolding flooding disaster. This will be combined with accelerated flood inundation models to generate detailed evacuation plans, and to predict the nature and progress of the flooding to improve allocation of emergency resources, build community flood resilience, save lives and reduce economic damage.

ENRICH will bring together expertise and experience from UK and Thailand in the areas of climate variability and climate change, floods and drought modelling and water resources management.

The Mun river basin in Northeast Thailand is a prime example of the area impacted by hydro-meteorological hazards. Its specific vulnerability lies in the fact that its upstream parts are more prone to droughts, whereby the downstream part of the basin is a flood risk zone. About 80 to 90% of rice cultivation area in the Mun river basin is rain-fed. Rainfall in the study area is highly erratic both in space and time even though the annual average amount is near to the norm of Thailand. This unevenness has serious effects on rice production, living conditions and income of farmers who are the main population in the region.

The ultimate aim of this project is to establish a strong collaboration and exchange of knowledge between the University of Exeter and AIT, to develop innovative integrated solutions to address the pressing problem of hydro-meteorological extremes and adaptation strategies and measures in the Mun river basin.

The proposed project will address the following research questions:

  • What are the main environmental drivers affecting the meteorological and climate variability and change in Northeast of Thailand?
  • What are possible hydro-meteorological scenarios and extremes in future in the study area? What is the level of confidence that the projected changes can be attributed to environmental and climate changes?
  • What are the expected changes in hydro-meteorological hazards and risks due to future climatic extremes?
  • What are the possible and plausible adaptation strategies and measures to improve climate resilience in the study basin?
  • In line with the recent policy and planning of the Royal Irrigation Department and Department of Water Resources of Thailand, this study will investigate drought hazard due to future climate change, and its impacts on vulnerability and risk in the study area. Furthermore, analysis on current adaptive measures and recommendation for further improvement to cope with future climate change will be produced.

The proposed two and a half year research programme will be realized through four integrated Work Packages (WPs):

  • WP1: Land use changes
  • WP2: Climate variability and climate change
  • WP3: Hydrometeorological extremes
  • WP4: Adaptation strategies based on the synthesis of results
  • The ENRICH team will work closely with the Thai Department of Water Resources and the Royal Irrigation Department, from the project inception workshop, through data acquisition and analysis and finally during the dissemination phase, so that the outputs can be taken up.

Two public participation meetings will be organised in the study area with local stakeholders - farmers, industries, local line agencies at provincial/district levels etc. - to understand the hydro-meteorological hazards related issues (at the start of the project), and discuss adaptation measures (towards the end of the project while developing the adaptation strategies and measures) with them.

Whilst ENRICH is a stand-alone initiative that can be completed independently, from an early stage it will seek cooperation with other projects funded within this programme to identify the potential for synergies through sharing data and expertise.

ESPRIT aimed to establish strong collaborations between the UK and Chinese partners to advance our scientific understanding of urban flooding and thus enhance flood resilience.

Through engagement with five Chinese cities that have suffered severe flooding in the past few years, the consortium created a framework of systems modelling to develop innovative solutions for strengthening cities’ resilience against flooding. The framework evaluated the effectiveness of interventions to support decision makers in strategic planning and adaptation measures.

ESPIRT worked closely with Chinese local governments and Torbay Council, UK as the project’s case studies, so as to address the common existing challenges in urban flood risk management. Various adaptation strategies were tested to compare their suitability in different weather and urban conditions. Local governments from both countries also shared their experiences and evaluated the solutions. As a result, a guidance for embedding flood resilience analysis in urban planning was established so as to safeguard future cities from the impact of flooding.

The main objectives of EU-CIRCLE were to define a holistic climate resilience infrastructure model and its constitutional components to develop the technical solution that will implement it and to extensively validate it in real world test cases.

Background

It is presently acknowledged and scientifically proven than climate related hazards have the potential to substantially affect the lifespan and effectiveness or even destroy of European Critical Infrastructures (CI), particularly the energy, transportation sectors, buildings, marine and water management infrastructure with devastating impacts in EU appraising the social and economic losses. The main strategic objective of EU-CIRCLE is to move towards infrastructure network(s) that is resilient to today’s natural hazards and prepared for the future changing climate. Furthermore, modern infrastructures are inherently interconnected and interdependent systems ; thus extreme events are liable to lead to ‘cascade failures’.

EU-CIRCLE’s scope is to derive an innovative framework for supporting the interconnected European Infrastructure’s resilience to climate pressures, supported by an end-to-end modelling environment where new analyses can be added anywhere along the analysis workflow and multiple scientific disciplines can work together to understand interdependencies, validate results, and present findings in a unified manner providing an efficient “Best of Breeds” solution of integrating into a holisti resilience model existing modelling tools and data in a standardised fashion.

It, will be open & accessible to all interested parties in the infrastructure resilience business and having a confirmed interest in creating customized and innovative solutions. It will be complemented with a webbased portal.The design principles, offering transparency and greater flexibility, will allow potential users to introduce fully tailored solutions and infrastructure data, by defining and implementing customised impact assessment models, and use climate / weather data on demand.

Objectives:

  • From response & prevention to resilience
  • Balancing Priorities
  • CIRP, Advanced Modelling and Simulation Environment for Assessing Climate Impacts to Infrastructures
  • SimICI a unique reference test-bed
  • Innovative local impact assessments
  • Reduce uncertainties
  • Contribute to Climate impact assessment standards
  • Scientific Support to policies and CI stakeholders
  • EU-CIRCLE as a vehicle to Industry Growth

Link to EU Policies

EU-CIRCLE lies on the intersection of several European policies and initiatives spanning across different domains. These include:

The EU Internal Security Strategy, and more importantly the 5th Objective to Increase Europe’s resilience to crises and disasters. This calls for an all-hazards approach to threat and risk assessment: guidelines for disaster management will be drawn up, national approaches will be developed, cross-sectoral overviews of possible risks will be established together with overviews of current threats, an initiative on health security will be developed, and a risk management policy will be established.

The EU Climate Adaptation Strategy (SWD (2013) 299), acknowledges that climate related hazards will have a defining impact on the status and operational capacity of European critical infrastructures, and society as a whole. More specifically, the following points have been identified:

  • Asset deterioration and reduced life expectancy
  • Increases in Operational Expenditure (OPEX) and the need for additional Capital Expenditure (CAPEX)
  • Loss of income
  • Increased risks of environmental damage and litigation
  • Reputation damage
  • Changes in market demand for goods and services
  • Increased insurance costs or lack of insurance availability.

The European Programme for Critical Infrastructure Protection (Directive 2008/114/EC), on the identification and designation of European Critical Infrastructures and the assessment of the need to improve their protection. Identified Critical infrastructures which, if disrupted or destroyed, would have a serious impact on health, safety, security or economic well-being of citizens and/or effective functioning of government in Member States. The Directive requested an all-hazards risk framework treating natural hazards and terrorism alike, setting the principles upon which the Member States must ensure that an operator security plan (OSP) or an equivalent measure for each designated CI is devised.

This three-year FAME project is designed to investigate emerging contaminants in the major Indian rivers and wastewater treatment works, as well as creating novel and affordable treatment solutions for urban and rural India. The project has been devised to support the Indian Prime Minister’s flagship initiative – The Clean Ganga Mission.

Led by Professor Fayyaz Memon, the FAME team includes key academics Professors David Butler and Shaowei Zhang from the University of Exeter, Dr Sarah Bell from UCL, Professor Ligy Philip (IIT-Madras) and Prof Absar Kazmi and Dr Bhanu Prakash Vellanki (IIT Roorkee). The industry steering board for the project is chaired by Dr Hans Jensen – CEO UK Water Industry Research (UKWIR).

The project has 15 industrial partners including the Environment Agency, Southwest Water, Public Health England, Indian Central Pollution Control Board and wastewater treatment systems manufacturers based in the two countries.

The Flooding from Intense Rainfall programme was a NERC-led five-year programme which contributed to our understanding of the risks associated with flooding from high-intensity convective storms.

The FFIR was led by the University of Reading and included three work packages, each with a specific goal:

WP1 Project FRANC:

Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection

Goal: To improve short-range forecasts of severe weather via the reduction of initial condition errors

WP2 Project SINATRA:

Susceptibility of catchments to INTense RAinfall and flooding

Goal: To advance scientific understanding of the processes determining the probability, incidence, and impacts of FFIR

WP3 Project TENDERLY:

Towards END-to End flood forecasting and a tool for ReaL-time catchment susceptibility'

Goal: To demonstrate end-to-end forecasting of flooding from intense rainfall, improve the effectiveness of flood risk management and underpin flood forecasting and risk management through the gathering of high quality scientific and community sourced data.

The CWS team worked on both the SINATRA and TENDERLY projects to develop an advanced inundation model that adopts high resolution rainfall measurement and forecast information for near real-time modelling and forecasting, to improve scientific understanding and risk management of FFIR.

FIWARE is a smart solution platform, funded by the European Commission (2011-16) as a major flagship PPP, to support SMEs and developers in creating the next generation of internet services, as the main ecosystem for Smart City initiatives for cross-domain data exchange/cooperation and for the NGI initiative. So far little progress has been made on developing specific water-related applications using FIWARE, due to fragmentation of the water sector, restrained by licensed platforms and lagging behind other sectors (e.g. telecommunications) regarding interoperability, standardisation, cross-domain cooperation and data exchange.

Fiware4Water intends to link the water sector to FIWARE by demonstrating its capabilities and the potential of its interoperable and standardised interfaces for both water sector end-users (cities, water utilities, water authorities, citizens and consumers), and solution providers (private utilities, SMEs, developers). Specifically we will demonstrate it is non-intrusive and integrates well with legacy systems. In addition to building modular applications using FIWARE and open API architecture for the real time management of water systems, Fiware4Water also builds upon distributed intelligence and low level analytics (smart meters, advanced water quality sensors) to increase the economic (improved performance) and societal (interaction with the users, con-consensus) efficiency of water systems and social acceptability of digital water, by adopting a 2-Tier approach:

  • Building and demonstrating four Demo Cases as complementary and exemplary paradigms across the water value chain (Tier#1);
  • Promoting an EU and global network of followers, for digital water and FIWARE (cities, municipalities, water authorities, citizens, SMEs, developers) with three complementary Demo Networks (Tier#2).

The scope is to create the Fiware4Water ecosystem, demonstrating its technical, social and business innovative potential at a global level, boosting innovation for water.

Why Fiware4Water?

The prerequisite of Fiware4Water is to lever the barriers of the water digital sector that is facing a low level of maturity in the integration and standardization of ICT solutions, in the business processes of these solutions and relative implementation of legislative framework, as described by the ICT4Water cluster.

The related needs are how to exploit the value of data for the water sector, how to develop and test robust and cyber-secured systems, how to create water-smart solutions and applications how to ensure interoperability and higher information capacity and how to design tailored solutions addressing a real need such as optimisation, prediction, diagnosis, real-time monitoring.

For further information, please visit the Fiware4Water website.

This project aimed to develop a flexible approach for water system planning and management that takes into account uncertainty and allows decision adjustments to be made as new information, new funds or new opportunities become available.

CWS is leading an international research consortium, including colleagues from University of Exeter, UK, University of Central Florida (UCF), US, and Tsinghua University (THU), China, to develop the advanced methodology in the project Flood impact assessment in mega cities under urban sprawl and climate change funded by the Global Innovation Initiative (GII), which aims to support multilateral research collaboration to address global challenges.

Prof Dragan Savic at CWS is the coordinator of the consortium, supported by Prof Ni-Bin Chang at UCF and Prof Binliang Lin at THU. The project aims to investigate the future flood impact as the consequence of the combination of urban development and climate change in three mega cities - London, New York and Beijing. Two of them are coastal cities facing threats from both heavier precipitation and sea level rise.

An urban growth model will be developed using the satellite sensor data and the artificial intelligence techniques to detect the changing trends of urban sprawl and to project future urban growth scenarios in these three cities. The parameters derived from the urban growth model will be used in hydraulic modelling to assess the flood impact for the whole city in the 2050s.

The state-of-the-art hydraulic models will be set up to simulate flooding in complex urban environment with high spatial resolution. The multi-disciplinary collaboration will bring the experts from the UK, the US and China together to create an operational framework for analysing flood impact associated with various urban development conditions and climate change scenarios at the mega-city scale. The results can inform urban planners about the potential increase of flood risk such that better urban development strategies can be developed and implemented to mitigate flood impact.

GeoRes will develop protocols to improve the engineering characteristics of waste geomaterials, and to guarantee the level of performance over the service life of geostructures built from waste geomaterials considering site-specific conditions (climate, water table, leaching, weathering, hazardous compounds, etc.).

GeoRes aims to expand the scope of the involved teams’ research in addressing some of the outstanding challenges in geotechnical and geoenvironmental engineering: developing innovative solutions for the reuse of waste geomaterials generated by construction and mining industries across Europe and worldwide.

Find out more on the dedicated GeoRes webpage.

The overall aim of the HOWS project was to develop a new approach for designing and managing improved, near-optimal and engineering-intuitive water systems by incorporating visual analytics, heuristic optimisation and feedback-informed learning.

Background

It is widely acknowledged that the water and wastewater infrastructure assets, which communities rely upon for health, economy and environmental sustainability, are severely underfunded on a global scale. For example, a funding gap of nearly $55 billion has been identified by the US EPA (ASCE, 2011). In England and Wales, the total estimated capital value of water utility assets is £254.8 billion (Ofwat, 2015), but between 2010 and 2015 only £12.9 billion was allocated for maintaining and replacing assets. Combined with the drive to reduce customers' bills, there will be even more pressure on water companies to find ways to bridge the gap between the available and required finances. As a result of this it is not surprising that optimisation methods have been extensively researched and applied in this area (Maier et al., 2014).

The inability of those methods to include into optimisation 'unquantifiable' or difficult to quantify, yet important considerations, such as user subjective domain knowledge, has contributed to the limited adoption of optimisation in the water industry. Many cognitive and computational challenges accompany the design, planning and management involving complex engineered systems. Water industry infrastructure assets (i.e., water distribution and wastewater networks) are examples of systems that pose severe difficulties to completely automated optimisation methods due to their size, conceptual and computational complexity, non-linear behaviour and often discrete/combinatorial nature. These difficulties have first been articulated by Goulter (1992), who primarily attributed the lack of application of optimisation in water distribution network (WDN) design to the absence of suitable professional software. Although such software is now widely available (e.g., InfoWorks, WaterGems, EPANET, etc.), the lack of user under-standing of capabilities, assumptions and limitations still restricts the use of optimisation by practicing engineers (Walski, 2001).

Automatic methods that require a purely quantitative mathematical representation do not leverage human expertise and can only find solutions that are optimal with regard to an invariably over-simplified problem formulation. The focus of the past research in this area has almost exclusively been on algorithmic issues. However, this approach neglects many important human-computer interaction issues that must be addressed to provide practitioners with engineering-intuitive, practical solutions to optimisation problems. This project will develop new understanding of how engineering design, planning and management of complex water systems can be improved by creating a visual analytics optimisation approach that will integrate human expertise (through 'human in the loop' interactive optimisation), IT infrastructure (cloud/parallel computing) and state-of-the-art optimisation techniques to develop highly optimal, engineering intuitive solutions for the water industry.

The new approach will be extensively tested on problems provided by the UK water industry and will involve practicing engineers and experts in this important problem domain.

This project aimed to address the issue of efficient water and energy demand resources management for the Chilean mining industry through modelling of water supply system and optimisation of its operation.

The main aim of the project was to advance knowledge about water demand in mining industry in order to develop cost-effective methodologies and tools to manage water demand by reducing water wastage, energy demand and impact on environment. This was achieved by development of an integrated water management framework to demonstrate evidence based potential of reducing impact on water in the whole water cycle (starting from seawater source to mining processes and finally when the used water is released back to environment) of mining industry.

This project will scope the flood risk of the Mun River Basin and analyse different types of drought and the yearly succession of wet and dry periods in current and future climates. The project will extend the scope of the ongoing ENRICH project (that is focussed on drought) to include flooding as the other hydro-meteorological extreme critical for South-East Asia and beyond. Findings from this project will address the classical but exacerbated problem of “too much” or “too little” water in the context of climate change. The key output will be the framework for integrated management of hydro-meteorological extremes that will be fundamental for future investigations of strategies for adaptation to drought and flood disasters.

This six-month project will build upon the successful partnership that the teams from University of Exeter and the Asian Institute of Technology (AIT) in Bangkok have had on ENRICH since 2018. Professors Slobodan Djordjevic, Mat Collins and Albert Chen from CEMPS and Professors Babel, Shrestha and Loc from AIT will work with a team of six postgraduate researchers at the two institutions. The project is supported by experts from relevant departments of Thai Government and scientific advisors from Denmark and the Netherlands.

Building sustainable local nexuses of food, energy and water: from smart engineering to shared prosperity.

This project focused on the combination of these two emerging trends by assessing the opportunities and challenges of localising food manufacturing. Since RDM focuses on manufacturing, the focus has been on processed food products using bread and tomato paste as examples. Apart from the interconnectedness of the physical resources food, energy and water, the way food supply systems are organised also has a large impact on socio-economic factors. In addition, policies can influence both the physical and socio-economic aspects of food supply systems. Therefore, within the LNN project a multilayer approach has been adopted in which food supply systems are evaluated from the physical, socio-economic and policy perspectives.

Objectives

With focus on co-development between EU and India ensuring exploitability of its outcomes, LOTUS brings a new ICT solution for India’s water and sanitation challenges in both rural and urban areas.

High-level objectives:

  1. To co-design and co-produce, jointly with EU and Indian partners, an innovative multi-parameters chemical sensor as an advanced solution for water quality monitoring in India. It shall use advanced technologies (carbon nanotubes) capable of monitoring in real time multiple contaminants and adaptable to diversified use cases in India;
  2. To develop a suite of tailor-made software tools, combined into a platform with cloud-based implementation. By integrating LOTUS new sensors to advanced ICT technologies, it shall improve water management according to the specific requirements of LOTUS Use Cases, representative of water challenges in India;
  3. To demonstrate and showcase the LOTUS sensor and software solution in a wide variety of Indian use cases across the whole value chain of water (urban and rural areas, drinking and irrigation water quality, river and groundwater monitoring, treated wastewater quality). Across use cases, the common goal is to improve on water availability and quality by improving on existing infrastructures, thus answering a wide range of socio-economic and technical water challenges in India;
  4. To investigate, co-design and plan the business model and market uptake of the LOTUS solution, with industrial production and further development and production of the sensor in India, ensuring an advanced but affordable, low cost product and solution for monitoring water quality, after the end of the project;
  5. To promote social innovation, by introducing co-creation, co-design and co-development with Universities, Research Centres, SMEs, NGOs, Utilities and local stakeholders, bringing together social sciences and technology experts, as a paradigm of successful EU-India Cooperation in the water sector, with lasting social, technological and business impacts for water quality in India, leading to viable, affordable and (socially) acceptable products and solutions, capacity development, job creation, contribution to wider issues and initiatives and wide outreach activities.

Visit the LOTUS website for further information. 

NextGen evaluates and champions transformational circular economy solutions and systems around resource use in the water sector.

NextGen aims to boost sustainability and bring new market dynamics throughout the water cycle at the 10 demo cases and beyond. Three key areas of action are foreseen.

The project will asses, design and demonstrate a wide range of water-embedded resources, including:

Water

Itself with reuse at multiple scales supported by nature-based storage, optimal management strategies, advanced treatment technologies, engineered ecosystems and compact/mobile/scalable systems.

Energy

Combined water-energy management, treatment plants as energy factories, water-enabled heat transfer, storage and recovery for allied industries and commercial sectors.

Materials

Such as nutrient mining and reuse, manufacturing new products from waste streams, regenerating and repurposing membranes to reduce water reuse costs, and producing activated carbon from sludge to minimise costs of micro-pollutant removal.

An integral part of deploying NextGen solutions will be to define and cultivate the framework conditions for success:

  • Involving and engaging citizens and other stakeholders - to give feedback on technology development, increase collective learning and shape solutions and behavioural change using communities of practice and living labs. Serious gaming and augmented reality will be immersive tools to explore the circular economy and behaviour change.
  • Addressing social and governance challenges - to ensure long-term adoption and support for circular economy solutions. This includes social acceptability testing, policy and regulation support and development of a European Roadmap for Water in Circular Economy.

Last but not least, NextGen will explore new business models and support market creation with three key initiatives:

  • A thorough analysis, profiling and sharing of business models and services for water solutions in the circular economy;
  • An online marketplace allowing users to explore NextGen showcases and demo case technologies;
  • Business and marketing support to exploit the extensive new opportunities revealed by adopting a circular economy approach.

For further information, please visit the NexTGen website.

The OVERCOME consortium consists of world-leading organisations that aim to develop a state-of-the-art research plan which integrates digital innovations in natural hazard and risk predictions, in order to develop intervention strategies for strengthening the resilience of vulnerable communities against climate hazards and health impacts.

The partners from the UK, Ghana, Malawi, Mozambique, and Zimbabwe will contribute knowledge and skills in climate and meteorology, hydrology and water resources, flood forecasting, droughts, water quality, epidemiology and public health, smart technologies, data science, environmental science, Water, Sanitation and Hygiene (WASH), risk communication, disaster management, social and policy sciences, and socio-economics.

The collaboration will combine multidisciplinary knowledge to develop a novel holistic framework to forecast the impact of floods/droughts and associated disease outbreaks. OVERCOME also has strong support from global experts and local major stakeholders. The external partners will steer research direction throughout the project, contribute their complementary knowledge, and engage the team with additional partners through their strong international networking.

Funded by the EPSRC, Professor Slobodan Djordjevic is leading the RAMB project, which is aimed at studying hydrodynamics and wear on bridges.

This is called ‘scour’ and happens when water courses are blocked by debris. Scour has been identified as a major cause of bridge failure during flooding. The project will investigate the hydrodynamic effects of floating debris in the watercourse during floods, and devise a systematic methodology to assess risks of debris blockage on masonry bridges and on bridge piers. The outcomes and developed methodology for risk assessment will be built into existing guidance from CIRIA. This is expected to enable optimal maintenance of bridges at risk to debris blockage and thereby improve resilience of the transport network and the rate of post-flood recovery.

RAMB stands for Risk Assessment of Masonry Bridges Under Flood Conditions: Hydrodynamic Effects of Debris Blockage and Scour.

Find out more about this project via our designated webpage.

This fellowship investigates how to develop smart water infrastructure systems using Information and Communication Technologies (ICT) and big data already available in the water industry in response to a changing environment including extreme weather.

There is a critical need to develop new advanced data and visual analytics to unlock the value of large-scale water utility databases for informed real time decision making on a wide variety of different problems including leakage, flooding, water pollution and energy efficiency. This fellowship offers exactly such an opportunity, through close collaboration with Northumbrian Water Ltd, to turn piecemeal techniques into integrated solutions for industry problems, thus is timely for major impact on large investments in water infrastructure in the next 50 years.

This fellowship aims to develop the next generation advanced analytics and tools that enable real time decision making for management and operation of smart water infrastructure systems. This fellowship will promote wider deployment of sensing and measurement technologies and informed, real time decision-making. It will improve operational automation and efficiency under standard design conditions and operational resilience under extreme conditions. This fellowship is particularly important to provide a step change towards a smart water system where the sensors and controllers are linked together for fully automated decision making in response to dynamic environments.

RECONECT is developing a holistic ecosystem-based framework enabling cross-sectoral/transdisciplinary analyses and evaluation to advance the knowledge of NBS in the context of hydro-meteorological risk reduction focusing on floods, storm surges, landslides and droughts.

RECONECT aims to rapidly enhance the European reference framework on Nature-Based Solutions (NBS) for hydro-meteorological risk reduction by demonstrating, referencing, upscaling and exploiting large-scale NBS in rural and natural areas.

In an era of Europe’s natural capital being under increased cumulative pressure, RECONECT will stimulate a new culture of co-creation of ‘land use planning’ that links the reduction of hydro-meteorological risk with local and regional development objectives in a sustainable and financially viable way.

To do that, RECONECT draws upon a network of carefully selected Demonstrators and Collaborators that cover a wide and diverse range of local conditions, geographic characteristics, institutional/governance structures and social/cultural settings to successfully upscale NBS throughout Europe and Internationally.

To achieve these ambitious goals, the RECONECT consortium brings together an unprecedented transdisciplinary partnership of researchers, industrial partners (SMEs and large consultancies) and authorities/agencies at local and watershed/regional level fully dedicated to achieve the desired outcomes of the project.

Led by: IHE Delft

Partners: The RECONECT Consortium includes 37 project partners, including the University of Exeter

Funder: European Commission's Horizon 2020 programme

For further information, please visit the dedicated RECONECT website.

RESCCUE aimed to improve urban resilience: the capability of cities to anticipate, prepare for, respond to, and recover from significant multi-hazard threats with minimum damage.

Facing climate change in urban areas

The RESCCUE project aims to help urban areas around the world to become more resilient to climate change.

More precisely, RESCCUE will bring this objective to practice by providing innovative models and tools to improve the ability of cities to withstand and recover quickly from multiple shocks and stresses and maintain continuity of services.

An end-users – city managers and urban service operators – oriented toolkit will have the capability to be deployed to different types of cities, with different climate change pressures.

A multisectorial appoach, a key advantage of RESCCUE

Cities, being complexes of interdependent systems, cannot be understood by sectorial and disciplinary approaches alone1. In this sense, RESCCUE goes beyond conventional urban resilience approaches delivering a forward looking, multi-scale, multisectorial and multi-hazard methodology. In order to interconnect the several sectorial models, the project will take advantage of the existent HAZUR® tool. The HAZUR® approach is based on a method and software (as a service) to help city decision makers and urban resilience professionals make fully informed and structured choices to make their cities more resilient analysing the interdependencies between different city services, monitoring the city and simulating cascade effects in case of impacts that may affect the city.

Based on this holistic approach, RESCCUE will analyse an interconnectedness of different urban systems, taking as starting point the water sector. This sector has been highlighted due to the importance of water- related risks in the correct functioning of a city: droughts or heavy rains can produce critical impacts on strategic urban services such as water supply, solid waste, telecommunication, energy supply, transport, etc.

1Walloth C, Gurr JM, Schmidt JA Eds.(2014) - Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling. Springer International Publishing Switzerland

3 cities, 3 different challenges

The models and tools will be validated in three different cities, carefully selected by their representativeness of the European diversity in terms of climate type and city characteristics: Barcelona, Lisbon and Bristol.

The aim of having three cities as the validation platform and first application of RESCCUE’s results will guarantee that the final product is complete, qualified and will ensure its maximum replicability when the project ends.

The five-year Fellowship, awarded to Professor David Butler, worth around £1.5 million, will fund a project which aims to develop a new approach to water management in UK cities.

Safe & SuRe will draw from multi-disciplinary collaboration with leading academics inside and outside the field.

The vision of this work is to develop a system for water management which is sustainable and resilient. A comprehensive, quantitative evaluation framework will be developed to test in detail what options or strategies can contribute towards a Safe and SuRe water future, focusing on the challenges of water scarcity, urban flooding and river pollution.

Objectives

  1. To develop, test and refine the Safe & SuRe water vision in the context of British cities
  2. To investigate, specify and develop a quantitative option assessment framework
  3. To evaluate threat mitigation and adaptation options and strategies and explore potentially conflicting goals and key interdependencies
  4. To develop a strategy for implementation incorporating transitioning approaches, preparedness for extremes, water users’ responses and the neglected role of town planning
  5. To engage widely with academic leaders in urban water management and other fields
  6. To collaborate with stakeholders and champion the vision and key findings into practice.

The key focus is on how existing urban water systems can be better used, managed, regulated, planned, operated, rehabilitated, retrofitted and redesigned to cope with the coming ‘perfect storm’.  

David Butler is Professor of Water Engineering at the University of Exeter with some 30 years of experience in the water industry. He jointly leads the Centre for Water Systems, which has around 30 researchers working mainly in the areas of urban water, system optimisation and hydroinformatics. Working with David on the Safe & SuRe project are colleagues Dr Raziyeh Farmani, Dr Guangtao Fu and Dr Sarah Ward.

Find out more about the Safe & SuRe project via our dedicated webpage.

SARASWATI aims to assess the sustainability and potential of technologies already existing in India for wastewater treatment, reclamation and reuse, as well as newly piloted EU technologies.

In order to assess the potential of new EU technologies to solve the real water challenges in India, it is crucial to have detailed knowledge of the strengths and weaknesses of the technologies that already exist in India. SARASWATI will further investigate in detail the reasons that have led to either successful or unsuccessful technology implementations. Based on a thorough understanding of the performance of existing technologies and the reasons that led to success or failure, SARASWATI will be able to develop sound recommendations on how the sustainability and potential of the studied technologies can be (further) increased to make them more suitable to solve the water challenges in India.

The key objectives of the full project include:

  • to provide a comprehensive documentation of existing wastewater treatment, reclamation and reuse technologies in India;
  • to pilot proven EU technologies that have the potential to solve real water challenges in India;
  • to conduct an independent and integrated assessment of the existing technologies in India;
  • to suggest strategies for measures to further improve the sustainability of both EU and non-EU technologies for solving water challenges in India and to assess the overall potential of all of the technologies;
  • to provide tools to facilitate replication and large-scale deployment of the technologies with the best potential to cope with the targeted real life water problems in India; and
  • to synthesise the research results and to achieve effective dissemination and take-up in practice, and the mainstreaming of results.

CWS contribution to SARASWATI

Led by Professor Fayyaz Ali Memon, CWS team is mainly responsible for developing a multi-objective based decision support system and to propose optimal technology combinations (wastewater treatment terrains) keeping in view contexts for a range of regions in India. CWS will also develop a database on treatment technologies and their associated attributes and sustainability evaluation.

For more information about the project, please see the SARASWATI fact sheet.

Project partners

  • University of Natural Resources and Life Sciences, Austria
  • Indian Institute of Technology, Roorkee (IIT-R), India
  • Centre for Water Systems University of Exeter, United Kingdom
  • Bureau de Recherches Géologiques et Minières, France
  • Fundacion Centro de las Nuevas Tecnologias del Agua, Spain
  • Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Spain
  • Centre for Environmental Management and Decision Support (CEMDS),Vienna (Austria) and Mumbai (India)
  • A3i, France
  • Simbiente - Engenharia e Gestão Ambiental, Portugal
  • Hydrok UK Ltd., United Kingdom
  • Indian Institute of Technology, Kharagpur (IIT-Kgp), West Bengal
  • Indian Institute of Technology, Madras (IIT-M), Tamil Nadu
  • Tata Institute of Social Sciences (TISS), Mumbai, Maharasthra
  • National Geophysical Research Institute (NGRI), Hyderabad, Andhra Pradesh
  • National Institute for Industrial Engineering (NITIE), Mumbai, Maharasthra
  • Doshion Veolia Water Solutions (DVWS), Ahmedabad, Gujarat
  • Madras School of Economics (MSE), Chennai, Tamil Nadu

SARASWATI is a European Union supported FP7 SME targeted Collaborative Project involving 10 European partners and 8 research organisations from India.

SIM4NEXUS searched for new scientific evidence on sustainable and integrated management of resources (water, land, energy and food) in Europe and elsewhere, and adopted the Nexus concept in testing pathways for a resource-efficient and low-carbon Europe.

SIM4NEXUS increased the understanding of how water management, food production and consumption, energy supply and land use policies are linked together, and how they relate to climate action. The research activities offered solid ground on the benefits of using a Nexus approach, primarily to exploit and create synergies between policies and avoid conflicts between policies. European policies for water-land-energy-food-climate sectors reckon with trade-offs in other sectors. However, opportunities for synergies are less explored and there is no institutionalised procedure for a comprehensive Nexus assessment of new policies. New integrating themes (e.g., circular and low-carbon economy related to resource efficiency and planetary boundaries) can stimulate a Nexus approach.

Our results and products contribute to the legacy of SIM4NEXUS, including knowledge and products to be used for training (i.e., universities, policy, business and civil society organisations). Commercial applications and training courses are planned to ensure follow-up actions. A combined for-profit and non-profit exploitation strategy is developed to ensure the largest project impact, among others to contribute to policy support and future assessments, including those of the Intergovernmental Panel on Climate Change (IPCC). Side-events were organised during COP23 (Bonn, November 2017) and COP24 (Katowice, December 2018) to present progress on the Nexus and climate action.

SIM4NEXUS will seek to partner with international fora in Europe and beyond (e.g. Nexus Project Cluster), to team up for increased and more impactful communication and dissemination of the Nexus concept.

Understanding the Nexus

SIM4NEXUS has a strong research dimension. SIM4NEXUS advanced in the understanding and assessment of the Nexus in various con- texts. A framework for the assessment of the Nexus is developed to facilitate future research assessing the impacts of interventions from

a Nexus perspective. Moreover, interlinkages between water, land, food, energy and climate are now made operational, identifying both the most influential and vulnerable resources. The degrees of interlinkages are defined, including direct and indirect pathways from one Nexus component to another. The Greek case study for example, proves the food sector is the one with the most influence on other Nexus dimen- sions, while water is the most affected and vulnerable resource (Laspidou et al., 2019).

Policy Analysis

Agriculture and Food are key sectors to increase the sustainability of natural resource use.

Climate change, climate change mitigation, and adaptation put pressure on agriculture and food security. At the same time, the agro-food chain can offer solutions for these problems, for example, by replacing animal with vegetable proteins in the diet and increasing resource efficiency in the agro-food chain.

European Common Agricultural Policy can support the transition to more resource-efficient agriculture, e.g., by encouraging farmers to grow less water-demanding or non-irrigated crops, to use technologies for precision irrigation and to reduce emissions of nutrients and pesticides. To protect and restore the soil, water, biodiversity, ecosystems and the landscape, Good Agricultural and Environmental Conditions (GAEC) and Greening measures should be stricter and better maintained, and direct payment should be linked to public services instead of agricultural land area.

Successful Nexus policy has many dimensions and is multi-scale. It concerns the whole policy cycle and depends on political will, mindset, a common vision, knowledge management and careful organisation of the process, which is complex and uncertain. Pilots and scenario analyses are helpful, and monitoring of progress and results is vital, as well as collaboration between researchers, stakeholders and policymakers from the start to end of the process. Long-term engagement and financing must be part of the deal, as no sector or sectoral institution feels responsible for the Nexus between sectors. Thematic approaches stimulate a Nexus approach, such as the European ‘From Farm to Fork’ and ‘Circular Economy’ initiatives.

The following policy briefs have been published:

  • Coherence in EU policy on water, land, energy, food and climate: Climate change adaptation policies (2017)
  • Policy coherence of the EU Common Agricultural Policy (CAP) within the Nexus between water, energy, land, food and climate depends on policy implementation (2019)
  • Implementation of EU Water Policies may benefit from synergies within the nexus between water, energy, land, food and climate (2019)
  • Eight Policy Coherence Recommendation to the European Green Deal (2020)
  • Landscape restoration to mitigate and adapt to climate change in Central and Eastern Europe (2020)

Thematic Models and Integration

System Dynamics Modelling (SDM) is our methodology of integration, including the modelling of multiple feedback and interaction among resources in the Nexus. SDM dates back from the 1960s. Used for studying feedback problems in industrial processes, it aims to understand how a system behaves and responds to incentives and changes. It proved to be a strong innovative methodology to test the Nexus concept.

The project builds on well known and scientifically established existing models, each to simulate different themes of the Nexus, such as Capri. E3ME, IMAGE-GLOBIO, MAGNET, MagPIE, OSeMOSYS and SWIM.

System Dynamics Modelling is used, integrating public domain data and metadata for decision and policy making.

Serious Game

SIM4NEXUS has developed a Serious Game. The Serious Game is a computer game that aids learning about the Nexus by helping users to understand and explore the interactions between water, energy, land and food resources management under a climate change context, divides the problem into manageable interventions, and allows participants to learn by doing. The ultimate goal of game development is to create a fun and interactive capacity-building tool to be used in research, educational settings and management.

The SIM4NEXUS Serious Game provides impressive user experience and state of the art technology to allow users to learn about the Nexus concepts while playing. To that end, the game relies on four main elements: the Graphic User Interface, the Knowledge Elicitation Engine, the Game Logic and the Nexus repositories.

Case studies & stakeholder engagement

Methodologies and tools to integrate the Nexus components have been tested with real-life challenges in 12 case studies at regional, national, European and global scales. The SIM4NEXUS Partners worked in close collaboration with relevant stakeholders to:

  • Specify the Nexus challenges they face
  • Apply the tools developed by SIM4NEXUS
  • Investigate the applicability and relevance of these tools for supporting decisions and raising awareness
  • Develop effective policy adaptation and implementation that supports a resource-efficient Europe.
  • The science-policy participatory and iterative process established has successfully led to policy recommendations.

An amazing wealth of data has been collected, both from local sources and thematic models, and connected through the specific System Dynamic Models. Policy interventions have been tested through the Serious Game and best possible combinations towards Nexus-compliance have been identified.

Using real-time monitoring and control solutions, the Smarter Tanks to build a resilient network project will explore how to best monitor drinking water and rainwater storage tanks to understand if more water can be stored when needed most.

The opportunity to implement smart water tank control into existing infrastructure will:

  • build operational resilience and reduce disruption to customers and the environment
  • pave the way for the rest of the water industry to follow suit

A key outcome of the project will be the development of a one-page business model for each smart tank use case, with supporting evidence gathered from workshops, desktop research and pilot installations to help scale the propositions tested. This will lay the groundwork for other companies or providers to adopt the concept if value is identified through successful proof of concept installations.

Led by: Affinity Water

Partners: Aqua Civils Ltd and University of Exeter

Funder: Ofwat Innovation in Water Challenge

For further information, please contact Principle Investigator Dr Peter Melville-Shreeve or visit the Ofwat website

SWEEP 006 connects academics and industry to evaluate and implement the potential of regional scale sustainable drainage in South West England.

The South West Partnership for Environmental and Economic Prosperity (SWEEP) is a collaborative initiative that will help deliver economic and community benefits to the South West, whilst also protecting and enhancing the area’s natural resources.

SWEEP 006 (Sustainable Drainage) is a sub-award of the main SWEEP partnership. The objective of this sub-award is to connect academia and industry to evaluate and implement sustainable drainage at a regional scale in South West England.

The project achieves this aim through establishing academic-industry networks, delivering training, developing tools and supporting ongoing sustainable drainage projects with partners across the region.

Find out more on the dedicated website.

The South West Partnership for Environmental and Economic Prosperity (SWEEP) is a collaborative initiative that will help deliver economic and community benefits to the South West, whilst also protecting and enhancing the area’s natural resources.

Funded by Natural Environment Research Council’s Regional Impact from Science of the Environment programme for 5 years, SWEEP will bring academic experts, businesses and policy makers together to solve some of the challenges involved in managing, utilising and improving the natural environment.

SWEEP is a collaboration of three research institutions: the University of Exeter, the University of Plymouth and Plymouth Marine Laboratory – working together with a large group of highly engaged business, policy and community partners.

The worldwide use of decision games, or often called Serious Games ('games that do not have entertainment as their primary purpose'), is becoming more popular and allows players/stakeholders to experience situations that are impossible in the real world for reasons of safety, cost, time or their rare occurrence. Examples of Serious Gaming applications include domains as diverse as healthcare, public policy, defence, training and education. In contrast to traditional Game Theory or Operations Research where scenarios or problems are typically well structured, serious gaming can simulate more complex, dynamic, uncertain, socially-coupled scenarios, referred to as "wicked problems" that are prevalent in the real world. 

Water supply and demand, food production and energy provision and consumption are intimately linked physically, socially and economically, forming the Water-Food-Energy Nexus, an interconnected system that is increasingly a cause for concern due to projected demand growth. Strategic decision making for planning and management of infrastructure supporting the Water-Food-Energy the Nexus is an example of such wicked problems. It can, therefore, benefit from leveraging the technical strengths of simulation models and the social strengths of multi-player/stakeholder engagement in a game execution.

The Serious Gaming approach offers potentially transformative capabilities to strategic decision-support tools to provide better management of complex infrastructure systems compared to purely technical simulation or optimisation methods that have difficulty in capturing the socio-technical challenges of complex systems. The Nexus Game will simulate the evolution of the Nexus system with player(s) interfering in a system's dynamics through various choice variables/interventions. This represents a paradigm shift not only from the approaches that focus solely on technical issues, but also a shift from policy and regulatory regimes that concentrate on individual Nexus components separately.

1. Research idea and transformative nature of the project

Understanding water and its interdependencies with food, energy and the environment is vital if water is to be managed effectively and efficiently. There is, however, a lack of tools to support long-term decisions related to water infrastructure in a wider context of the water, food and energy (WFE) Nexus and in long term. This project will contribute to better management of the complex WFE system by investigating a Serious Gaming (SG) approach (‘The Nexus Game’) as the basis for developing more effective and timely infrastructure policy and decisions at various spatial (local, regional and national) and temporal scales.

Water supply and demand, food production and energy provision and consumption are intimately linked physically, socially and economically, forming the WFE Nexus, an interconnected system that is increasingly a cause for concern due to projected demand growth. This complex system relies on large physical networks of interrelated infrastructure components to support modern societies. However, the Nexus is also a collaborative system with significant technical and social complexity. Water (and its associated infrastructure systems for drinking water supply and wastewater disposal, irrigation, flood control, coastal protection, etc) is the critical ingredient in this connected system, and thus forms the focus of this project.

The worldwide use of decision games, or often called Serious Games ('games that do not have entertainment as their primary purpose'), is becoming more popular and allows players/stakeholders to experience situations that are impossible in the real world for reasons of safety, cost, time or their rare occurrence. Examples of SG applications include domains as diverse as healthcare, public policy, defence, training and education. In contrast to traditional Game Theory or Operations Research where scenarios or problems are typically well structured, serious gaming can simulate more complex, dynamic, uncertain, socially-coupled scenarios, referred to as “wicked problems” that are prevalent in the real world. Strategic decision making for planning and management of infrastructure supporting the WFE system is an example of such wicked problems. They can, therefore, benefit from leveraging the technical strengths of technical simulation models and the social strengths of multi-player/stakeholder engagement in a game execution.

The SG approach offers potentially transformative capabilities to strategic decision-support tools to provide better management of complex infrastructure systems compared to purely technical simulation or optimisation methods that have difficulty in capturing the socio-technical challenges of complex systems. The Nexus Game will simulate the evolution of the WFE system with player(s) interfering in a system's dynamics through various choice variables/interventions. This represents a paradigm shift not only from the approaches that focus solely on technical issues, but also a shift from policy and regulatory regimes that concentrate on individual WFE components separately.

2. Proposed approach

To achieve the above project vision, which is ambitious, multidisciplinary and of a highly strategic nature, the following four research areas will be addressed:

  1. Infrastructure components and interactions within the WFE Nexus: A detailed causal loop diagram laying out qualitative causal relationships among WFE system components will be developed first. This will form a basis for a System Dynamics model with multiple interacting feedback loops. An example of which is the link between single farm payments, land management and flooding. The focus will be on the importance of interactions and feedback between socio-technical components, their scale and the level of complexity that is appropriate for capturing the major processes and elements that characterise their behaviour.

  2. A modelling framework to represent structure and behaviour of the Nexus elements: Infrastructure components of the WFE system are realised as large physical networks (e.g., water supply, drainage, energy, transport, etc.), suggesting a graph-theoretic approach for modelling basic structure. This will be implemented through a complexity science approach (e.g., System Dynamics modelling), which enables simulation of non-linear, feedback driven complex dynamic systems.

  3. Software engineering/informatics aspects of game development and execution: To develop the Nexus Game, a logical framework for gaming and an engine will be required. Both the logical framework and engine will be developed to maximise the use of existing open data, such as maps, rainfall and flow data. Furthermore, as the game will have to be engaging and motivating, interface concepts will be borrowed from successful entertainment games, such as SimCity and Minecraft.

  4. A programme of SG exercises with a number of participants: The game will be centered on the unique interplay of the infrastructure and the WFE Nexus in the UK and will consist of a number of roles, which include policy makers or government, residents, farmers, businesses, water utilities and city planners. The game will be used not only to analyse infrastructure policy options under conditions of uncertainty, but also for educational purposes.  Players’ behaviour during the game could be data-mined to improve the decision making process and the social interaction between the parties.

Previously funded projects in the UK and overseas have contributed scientific knowledge and applications in one of the separate WFE Nexus areas, but nothing on the scale that the unconventional approach adopted in this proposal offers has been attempted in the past. Furthermore, this new approach departs from the classical simulation modelling and ‘predictive approaches’ where a model is calibrated, verified and then used for prediction (with or without uncertainty quantification). The approach proposed here involves a complexity science view of modelling where due to interactions of technical and socio-economic components new properties of the system may emerge that could not have been anticipated (e.g.,‘tipping points’, 'bifurcation points', etc). This is a fundamentally different way of approaching uncertainty and risk analysis in socio-technical systems that could pave way to future decisions that will minimise unintended consequences, such as when biofuels impact on water availability and biodiversity or displace food crops.

3. Impacts, outcomes and risk management

The project will focus on UK water infrastructure and water security within the WFE Nexus (i.e., how it could be achieved; possible future scenarios, threats, synergies, uncertainties; what policy approaches can/should be developed and applied, etc). Thus it would directly address a major societal challenge: how should the UK achieve its basic provisioning of WFE in the future, but with a particular focus on water, a strategic question of great importance to any society. Water security is also vital to future UK economic success and environmental integrity as failure to achieve security could have dire consequences for other sectors.

The work is to be completed in two years, ultimately delivering:

  1. A working prototype of a computer-based Nexus Game platform that can be used for playing the game by at least one player to explore the likely consequences of any decision in the long term, with the potential to be extended to multiplayer capability. Three examples of systems at different scales (from micro to macro) will be developed on the platform, including urban scale (e.g., a town/city), catchment scale (e.g., Somerset Levels), and UK scale.
  2. A new logical framework which can be extended to different objectives beyond the Nexus management and for various scales (local, regional and national).
  3. An open-source engine that supports the ongoing development of serious games for environmental management.
  4. A programme of Serious Game exercises/playing to be undertaken with a number of participants.

The key strategic risk stems from the fact that the project is technically ambitious and it is planned to approach the development by tackling simpler enquiries first and involve stakeholders early on in the process to establish the required Nexus Game elements. There is also a risk with the appointment of a PDRA with required expertise and skills across a number of disciplines (engineering, information technology, decision science, etc). Given the industrial demand for engineers/scientists with such skills is  necessary to offer a salary in the range requested. Another type of risk relates to open data availability for the development of games and visualisation of results. Wherever possible, open data sources will be used, e.g., Defra and Env. Agency. There is a technical risk that computing facilities may be too slow to enable realistic gaming and inform decisions. Use of modular development and latest gaming computer technology (e.g., with a high-spec Graphical Processing Unit) will ensure maximum speed of execution. There is also a risk that the system may not provide the required decision support and this will be mitigated by including potential end-users/stakeholders early on in the project.

4. Difference award will make

The use of Serious Gaming in water engineering and management is in very early stages and requires initial research and development to explore the potential of this exciting approach. This project will deliver a fast turnaround and open this new approach to wider audiences of policy makers, water engineers and other scientists involved in water research and management. This project will also deliver impact nationally (policy-based research) and internationally (by highlighting issues associated with the interdependencies between water, food and energy), which is a key goal of the EPSRC strategic plan. Furthermore, national excellence in simulation and modelling for water engineering applications, with significant international academic impact, will be strengthened because this project combines, uniquely, technical and socio-economic considerations into a single, complexity modelling framework taking account of societies having to adapt national infrastructure for environmental (climate) change. The Principal Investigator will use this project to build on interdisciplinary research he has been conducting at the interface of disciplines that place more emphasis on quantitative rigour (e.g., engineering and computer science) and softer disciplines (e.g., socio-economics), which is normally difficult to get funding for.

The TWENTY65 research programme focuses on interdisciplinary teams working across the water cycle to develop flexible and synergistic solutions tailored to meet changing societal needs and achieve positive impact on health, environment, economy and society.

Can we close the urban water cycle by integrating stormwater management with water supply management? Focusing on integrated urban water management from a household, to the street through to the catchment level, can incorporating dual function rainwater harvesting and sustainable drainage systems offer a key solution?

For more information, visit the 'Twenty65' dedicated website.

 

ULTIMATE aims to create economic value and increase sustainability by valorising resources within the water cycle.

ULTIMATE will act as a catalyst for “Water Smart Industrial Symbiosis” (WSIS) in which water/wastewater plays a key role both as a reusable resource but also as a vector for energy and materials to be extracted, treated, stored and reused within a dynamic socio-economic and business oriented industrial ecosystem. We adopt an evidence-based approach anchored on 9 large-scale demonstrations across Europe and SE Mediterranean relevant to the agro-food processing, beverages, heavy chemical/petrochemical and biotech industries.

We recover, refine and reuse wastewater (industrial and municipal) but also extract and exploit energy (combined water-energy management, treatment processes as energy producers, water-enabled heat transfer, storage and recovery) and materials (nutrient mining and reuse, extraction and reuse of high-added-value exploitable compounds) contained in industrial wastewater. We support the cases and ensure their replicability through smart tools to optimize and control, assess costs and benefits, minimize risks and help stakeholders identify, assess and explore alternative symbiotic pathways linked to emerging business opportunities, supported by tailored contracts and investment schemes.

ULTIMATE nurtures partnerships between business (incl. industrial and technological ecosystems), water service providers, regulators and policy makers and actively supports them through immersive Mixed Reality storytelling using technology and art to co-produce shared visions for a more circular, profitable, socially responsible and environmentally friendly industry, with water at its centre. The project mobilises a strong partnership of industrial complexes and symbiosis clusters, leading water companies and water service providers, specialised SMEs, research institutes and water-industry collaboration networks, and builds on an impressive portfolio of past and ongoing research and innovation, leveraging multiple European and global networks to ensure real impact.

Led by: KWR Water Research Institute

Partners: The ULTIMATE Consortium consists of 27 project partners from 11 European countries, including the University of Exeter

Funder: European Commission's Horizon 2020 programme

For further information, please visit the dedicated ULTIMATE webpage.

Enabling the co-ordinated planning, design and operation of closely coupled urban water systems necessary to achieve transformative change in urban flood risk and water management.

Stormwater is frequently considered a hazard leading to a focus on extreme events at one end of the hydrological spectrum which can cause catastrophic flooding, property damage and potentially loss of life. As we enter a more uncertain climate the need to retain and utilise stormwater as a vital water resource comes more sharply into focus. WP2 (led by the Exeter team) examines these options and how they interact with the urban system both in the short and long term, and the benefits that can be secured both directly and indirectly.

For more information visit the urban flood resilience website.

This project aimed to engage an audience of 70% girls and women with water issues and the contribution of engineering to solving them.

Through engaging 3 different schools in deprived areas of Taunton in discussing, designing and delivering sustainable drainage systems (SuDS) and alternative water supplies (AWS), this project aimed to engage an audience of 70% girls and women with water issues and the contribution of engineering to solving them. The purpose of this is to increase the awareness of pressures on the water-cycle, interest of female students from low-income backgrounds in choosing engineering-related subjects, and foster supportive attitudes in adults to encourage girls to show interest in engineering.