
This custom-built micro-spectrometer provides two- and three-dimensional mapping of biomolecules based on their unique Raman fingerprint. Based on broadband coherent anti-Stokes Raman scattering this system provides a combination of speed, sensitivity and spectral breadth. The system utilizes a configuration of laser sources that probes the entire biologically relevant Raman window (500–3500 cm–1). By utilising intra-pulse three-colour excitation and the non-resonant background to heterodyne-amplify weak Raman signals it is possible to obtain efficient acquisition of the typically weak ‘fingerprint’ region.
At the heart of the system are two co-seeded fibre lasers (Toptica, FemtoPro), custom designed specifically for broadband CARS. The system provides synchronization of narrowband (∼3.4 ps) flat-top pulses at 770 nm synchronised with supercontinuum pulses (∼16 fs) spanning ∼900–1400 nm. The first fibre laser, a FemtoFiber pro NIR is a frequency doubled ultrafast Erbium fibre laser coupled to a FF 1PS NIR FemtoFiber pro to increase the pulse length to ~3.4 ps. The second fibre laser is an ultrashort-pulsed Erbium fibre amplifier (FF PRO UCP AMP) with motorised control for optimisation of the supercontinuum power and pulse duration. The FF PRO UCP AMP is seeded by the FF PRO NIR so that the two pulse trains are intrinsically rep-rate locked.
The beams are temporally and spatially overlapped and delivered onto the sample via a 1.2NA objective and the CARS signal collected in the forwards direction by and inverted microscope (Olympus IX73) with a 0.7NA objective. The anti-Stokes signal is spectrally isolated from the excitation wavelengths using band-pass filters and focused onto the entrance slits of a spectrograph (Princeton Instruments Isoplane 160) equipped with a fast CCD camera (Princeton Instruments Pixis).
Further reading: