Dr Stuart Daines
Research Fellow
Physical Geography
About me:
My overall research interest is in understanding the coevolution of life and the physical environment, focussing on understanding the links between marine ecology and biogeochemistry.
Biochemical processes such as oxygenic photosynthesis are linked to the biosphere and physical Earth System by a hierarchy of processes on scales from the molecular biology of the cell through organisms and ecosystems to geochemistry. Evolutionary ecology is then key to understanding how global properties such as atmospheric oxygen level and element cycling arise as emergent properties from natural selection and physiological, biochemical and biophysical constraints at lower levels, and geochemistry at large scales. My work uses models from simple box models to agent-based computational models to ultimately seek to understand overall organising principles for ecosytem structure and function in the Earth system.
Interests:
I use models from simple box models to agent-based computational models to ultimately seek to understand overall organising principles for ecosytem structure, and function in the Earth system. Understanding the principles underlying emergent properties such as biogeography, biodiversity and element cycling will help understand when ecosystem response to an environmental perturbation or evolutionary innovation results in gradual and predictable adaptive change, and when to a catastrophic regime shift, and ultimately how life has coevolved with the physical environment over Earth history.
Qualifications:
BA (Cambridge)
PhD (Cambridge)