Affiliate Investigators
Professor Peter Ashwin
My research interests include the mathematics and applications of nonlinear dynamical systems, especially synchronization problems, bifurcations, computational modelling, spatially extended systems and nonautonomous systems. The applications to living systems I am interested in include biophysical modelling (active transport and organelle dynamics in cell biology), cognition (perceptual rivalry, computational aspects of networks), molecular networks, functional dynamics in neural and biomedical systems and tipping points in nonautonomous systems.
Professor Susan Banducci
Susan Banducci is an interdisciplinary researcher working at the interface of computational methods, survey research, and the social sciences. She is interested in the public’s use of digital technologies and has recently published on public perceptions of the Covid contact tracing app. She is working with Dr Vicki Gold (LSI, Biosciences), Dr Ben Temperton (Biosciences), Sophie McCammon (LSI, Biosciences), and Dr Kirils Makarovs (SSIS, Exeter Q-Step) on public perceptions of phage therapies.
Dr Tobias Bergmiller
Tobias Bergmiller’s research focuses on elucidating the behaviour of individual bacterial cells towards environmental perturbations and stress. In particular, he is interested in deciphering bacterial responses towards antibiotics that are enabled by phenotypic heterogeneity in otherwise clonal populations. At the core of his interest are multi-drug efflux pumps and gene expression programmes that mediate bacterial survival and adaptation to antibiotic exposure. His experimental approaches combine bacterial genetics, microfluidics and long-term imaging.
Dr Alexandra Brand
My research focuses on how the interactions of filamentous fungal pathogens with their physical environment results in invasive growth behaviour. The ability to control the direction of filamentous growth in order to penetrate relevant substrates is fundamental across most environmental fungi but, in the context of human disease, the ensuing tissue damage leads to hyper-inflammation, organ failure and mortality. My group uses a number of biophysical approaches to elicit growth responses from fungal hyphae at the molecular and whole-cell levels. Live-cell imaging within micro-fabricated chambers enable us to track changes in the spatial distribution of protein complexes and correlate this with fungal morphology and behaviour in response to tip-contact, electric fields and the mechanical properties of the extracellular matrix.
My current work with LSI staff and Affiliates includes:
• Development of image analysis tools with David Richards
• Inference of spatial regulatory mechanisms through analysis of protein complex dynamics with Wolfram Moebius
• Building Microfluidics capacity with Stefano Pagliara, Tobias Bergmiller, Remi Chait and Jehangir Cama.
Professor Nigel Cairns
Professor Nigel Cairns, an internationally-recognized neuropathologist, is working with colleagues at LSI, Drs Vicki Gold and Betram Daum, to more fully characterize the atomic structure of misfolded proteins, the pathologic building blocks of most neurodegenerative diseases. Unravelling these misfolded proteins may reveal novel targets for therapeutic intervention where none currently exists.
Professor Nigel Cairns is also developing collaborations with Drs JJ Phillips and Daniel Kattnig.
Dr Remy Chait
My research is oriented around measuring and manipulating interactions between genes and their cellular, genomic, environmental, and community contexts giving rise to microbial population behaviours such as antibiotic resistance. We incorporate diverse approaches in experimental evolution, mathematics, systems microbiology, engineering and instrumentation to understand how interactions between cells shape bacterial community behaviours, the value of environmental sensing and phenotypic variation in fluctuating environments, and how phenotypes broadly respond to mutation.
My research spans elements of microbial systems biology, evolutionary biology cybergenetics, antimicrobial resistance, and engineering.
Professor Peter Challenor
Peter Challenor is a Professor in the Mathematics Department where he leads the Statistics and Data Science group. His interests include decision making with complex numerical models and uncertainty quantification for such models. Increasingly numerical models are being developed to explain and predict the behaviour of living systems. Such models may be derived from physical and biological principles and expressed as the solutions of sets of differential equations or they may derive from data via statistical and machine learning methods. In either case, if we are to use such models for real world decision making we need to know the quality of such models. One way to measure such quality is to estimate the uncertainty involved in the modelling and via comparison with real world data.
Dr Alex Corbett
My research investigates the application of advanced photonics techniques to medical imaging. Specifically I am interested in the development of new microscopy tools that can improve the specificity and spatiotemporal resolution of biomedical image data. Current projects include the rapid acquisition of three-dimensional data sets of excitable tissues and the development of coherent optical methods for dye-free optical imaging. I am also interested in the development of quantitative methods in biomedical imaging, including the development of new calibration standards to place specific bounds on the accuracy of image data.
Biography
I obtained MSci (Physics) and PhD (optical engineering) degrees from the University of Cambridge, UK in 2003 and 2008 respectively. After working for a research-intensive Cambridge start-up for four years, I began postdoctoral research in fast scanning optical microscopy in the group of Prof Tony Wilson, University of Oxford in 2010. To broaden my experience I worked on a series of imaging-based projects as a Senior Engineer at Canon Research in Sydney, Australia. I returned to Oxford in 2014 to construct a remote focusing multiphoton microscope in the Department of Physiology in collaboration with Prof Gil Bub, Prof Ed Mann and Dr Rebecca Burton. I began a lectureship in the Biomedical Physics group in January 2016, becoming a Senior Lecturer in April 2020.
Professor Neil Gow FRS
My research
My group works on the pathogenic interactions between fungal pathogens and the human host. Our main interest is understanding the structure and function of the fungal cell wall as the natural interface between the pathogen and its host. We are investigating the ligands of the wall that are important for immune recognition and the cell wall biosynthetic processes that can be used as targets the development of antifungal drugs and antifungal vaccines. My group is supported by a Wellcome Senior Investigator Award, two Wellcome Collaborative Awards and a number of joint awards with colleagues in the MRC-CMM and LSI.
Relationships with staff in the LSI:
- I am a co-applicant on a project called the Molecular Mechanic Initiative (MMI) supported by EPSRC Physics for Life grant led by Professor Frank Vollmer and team of co-investigators. This is using nanoparticle technologies and single molecule sensors to investigate fungal cell wall binding proteins.
- I am a co-applicant on BBSRC equipment grant award led by Professor Gaspar Jekely that funds cryo-fixation/ freeze-substitution equipment underpinning high resolution electron microscopy and tomography.
- I am working with Dr Caitlin Chimerel investigating the pharmacodynamics of AmBisome (and antifungal drug that is delivered in a liposomal formulation), using cavity enhanced absorption spectroscopy that has th potential to make single cell measurements of drug translocation.
- I am beginning to investigate how novel microfluidic methodologies can be applied to study fungus-drug interactions with a new team of LSI researchers.
Professor Ivana Gudelj
My group utilizes mathematical and experimental approaches to understand competition, cooperation and coevolution amongst microorganisms. We are a truly interdisciplinary team where mathematicians, physicists, bioinformaticians, molecular biologists and experimental evolutionary ecologists work alongside each other and share skills. By developing approaches that bring together systems biology into a population level framework we strive to quantify how microbial community composition is determined by the metabolism, genetics and physiology of individual players. This is important for solving fundamental problems in evolutionary biology including the evolution of diversity, virulence and antimicrobial resistance.
Professor Jonathan Mill
Jonathan Mill is Professor of Epigenomics in the University of Exeter Medical School. His group is interested in understanding the ‘causes’ and ‘consequences’ of molecular variation in the brain. They take an integrated genomics approach to study both neurodevelopmental (e.g. autism and schizophrenia) and neurodegenerative (e.g. Alzheimer’s disease and ALS) disease phenotypes. They use cutting-edge methods to explore cell-type-specific patterns of gene regulation in the human brain, with a particular focus on epigenomics, alternative splicing, and the genetic control of gene expression.
More information on their work can be found at www.epigenomicslab.com.
Professor Julian Moger
My research involves the development and application of nonlinear optical techniques to address biomedical challenges. In particular, my work focuses on Coherent Raman Scattering (CRS), a technique that exploits the intrinsic nonlinear optical response of biomolecules to derive label-free biochemical contrast of living systems.
I am currently collaborating with Stefano Pagliara and Fabrice Gielen, but I am keen to explore further collaborations with other staff in the LSI who would benefit from the advanced optical imaging techniques in my laboratories.
Dr Francesca Palombo
Francesca Palombo is an Associate Professor of Biomedical Spectroscopy at the School of Physics and Astronomy. Dr Palombo is a pioneer in optical elastography to study biomechanics on a subcellular scale. She was a postdoctoral research associate at Imperial College London and UEA before joining Exeter as a lecturer in 2013. She has a strong vibrational spectroscopy background which spans frequency-domain and time-resolved laser spectroscopy, imaging and microscopy techniques. Her core biomedical studies focus on disease detection, especially cancer and dementia, along with fundamental biochemistry and biophysics
Dr Peter Petrov
My research interests are in the area of membrane biophysics, focusing on the importance of the membrane physical properties in controlling and directing biological function in health and disease. I have more than 20 years’ experience in red cell research and model and artificial lipid membranes, including Langmuir lipid monolayers and synthetic lipid bilayers (vesicles), investigating their thermodynamics, viscoelasticity, microdomain mesoscopic structure, electrostatic potentials and morphology. Recent work from my laboratory includes studies of the effects of oxidative stress on membrane mechanical and electrical properties, and biochemical signalling originating from the red blood cell, the effects of membrane physical properties on the interactions between the plasma membrane and bacterial (pore-forming) toxins and immunotoxins, protein-lipid interactions in model systems, fatty acid transmembrane transport in mammalian cells, and the use of synchrotron-based methods to resolve the molecular organisation of model membranes. I have also worked in low Reynolds number hydrodynamics, statics and dynamics of wetting and self-propelling artificial swimmers.
Dr Tom Piers
Tom is interested in using human induced pluripotent stem cell (iPSC) models to understand the cellular consequences of disease-associated genetic risk. He is mainly interested in the effect of genetic variation associated with late-onset Alzheimer’s disease and uses complex in vitro models of microglia and organoids to further understand the effects on cellular activation states. He uses a multidisciplinary approach to identify novel targets and pathways that can be therapeutically targeted using strategies that can provide rapid translation of findings to the clinic.
Professor Nick Stone
Nick is the University Lead for Healthcare Technologies’ and has a strong track record working at the interface between physics, engineering and medicine. In 2012 he was appointed to the position of Professor of Biomedical Imaging and Biosensing at the University of Exeter. He leads the Biomedical Spectroscopy team (with Prof Francesca Palombo) exploring the novel use of novel vibrational spectroscopic techniques for point of care testing, advanced spectral histopathology and rapid in vivo diagnostics. These approaches use light to probe the molecular components of cells and tissues, providing a rapid, non-destructive, phenotypic fingerprint without labelling. He holds a range of major grants from EPSRC, MRC, CRUK, NIHR ranging from fundamental science to clinical translation. He currently holds the positions of Honorary Consultant Clinical Scientist at Gloucestershire Hospitals NHS Foundation Trust and at the Royal Devon and Exeter Foundation Trust.
Dr Joel Tabak-Sznajder
I am a Senior Lecturer at the Institute of Biological and Clinical Science.
My research combines experiments, computation, and mathematics to understand the production of rhythmic activity in biological systems. Oscillations enable coordinated activity within biological systems, and disruptions in these oscillations can cause disease.
At the cellular level, I study the rhythmic electrical activity produced by neurones, cardiac myocytes, and endocrine pituitary cells.
At the network level, I study the oscillators that produce motor activity in the tadpole, and the dynamic coordination between these oscillators that results in swimming behaviour.
Collaborations with LSI staff:
— NetClamp: conducting neural network rhythms with mathematics (with Kyle Wedgwood).
Dr Cameron Weadick
I am interested in the processes that shape biological diversity at the organismal and genetic levels. My present focus is on the consequences of relaxed natural selection—on the evolutionary fate of adaptations that are no longer critical to survival and reproduction. When environmental conditions change, mutations that alter previously adaptive traits can accumulate, and novel selection pressures that act to reshape these traits can emerge. The study of relaxed selection provides an important complement to adaptation-focussed research in the context of environmental change.
Professor Edze Westra
I am a NERC funded Independent Research Fellow (Professor), working on the evolutionary ecology of host-parasite interactions. My lab studies how ecological variables drive the evolution of various immune strategies in bacteria, with an emphasis on CRISPR-Cas adaptive immune systems, and examines their coevolutionary consequences. Bacteria encode lots of different immune mechanisms, and their molecular basis has been studied in great detail, which makes them an ideal model system to study more generally how ecology drives the evolution of different defenses. These bacterial defense mechanisms include CRISPR-Cas, which I studied at the molecular level during the start of my scientific career, surface modification, restriction modification, abortive infection and prokaryotic Argonaute.
Dr Elizabeth Williams
My primary research interest lies in understanding the developmental phenomenon of metamorphosis in marine animals. Many marine animals, including sponges, corals, jellyfish, shellfish, crustaceans, worms, sea urchins, starfish and sea squirts, have a life cycle which includes a free-swimming larval stage that must find the ideal location to settle down on the seafloor and undergo metamorphosis to an adult form. I use molecular biology approaches to study the sensory and neuroendocrine systems of marine invertebrate larvae to understand how they interact with their surrounding environment to navigate through the ocean and regulate the timing of their metamorphic transition. These larvae are crucial to the survival, connectivity and evolution of marine populations.
My background lies in marine biology and molecular biology. Following a BSc in Marine Biology at the University of Queensland, Brisbane, Australia, I carried out a BSc Hons research project investigating natural variation in gene expression during sea squirt larval development. During my PhD, I studied the interplay of genes and environment in the metamorphosis of tropical abalone, an emerging aquaculture species. I then joined the Max Planck Institute for Developmental Biology in Tübingen, Germany, as a postdoctoral researcher working on neuropeptide signalling in the life cycle of marine worms, sea anemones, jellyfish and placozoans. Following a move to the University of Exeter’s new Living Systems Institute with my postdoctoral research lab in 2018, I was awarded a BBSRC David Phillips Fellowship in late 2019. Commencing May 2020, this fellowship allows me to build my independent research group in the Exeter Biosciences.
Dr Yu Hsuan Carol Yang
Dr Yang is a Lecturer in the Institute of Biomedical and Clinical Science, College of Medicine and Health. Her research focuses on how the nervous system regulates endocrine pancreas development and the energy homeostasis.