Our work
Historic work
Military simulation research
We delivered a research project, funded by the Defence Science and Technology Laboratory, which utilised a weapon simulation (see image).
The research explored the use of Quiet eye training to improve marksmanship skills in simulated environments.
Publication
Aviation
With funding from the Higher Education Funding Council for England (HEFCE) we worked with Exeter-based airline Flybe to use flight simulators in the assessment of a pilot’s reaction to pressure.
Publication
Surgery simulation and robotics
We performed a number of studies to explore the fidelity of surgical simulations for laparoscopic surgery. We tested the construct validity of a TURP simulator and also adopted eye tracking technology to validate the simulation against real-life operations.
With funding from Intuitive Surgical, we also explored the performance and cognitive benefits of the DaVinci surgical robot from the perspective of the surgeon, including learning, stress and workload.
We also explore the role of observational learning, in the acquisition of robotic surgical skills. (Link to experimental work).
Publications
- Face validity, construct validity and training benefits of a virtual reality TURP simulator.
- Assessing visual control during simulated and live operations: gathering evidence for the content validity of simulation using eye movement metrics.
- Robotic technology results in faster and more robust surgical skill acquisition than traditional laparoscopy.
- Robotically assisted laparoscopy benefits surgical performance under stress.
- Surgeons display reduced mental effort and workload while performing robotically assisted surgical tasks, when compared to conventional laparoscopy.
- Action observation for sensorimotor learning in surgery.
- A randomised trial of observational learning from 2D and 3D models in robotically assisted surgery.
360° video: the DaVinci surgical robot. Click and drag to rotate the camera. Watch on YouTube
Driving simulation
We have previously used simulated rally driving to explore the link between eye movements and steering movements and test theories about the disruptive effects of anxiety on attention.
Additionally, simulated driving is an ideal environment in which to explore the psychophysiological determinants of flow, a peak performance state of intense concentration and motivation (see publications).
Publications
- Prevention of coordinated eye movements and steering impairs driving performance
- The role of effort in moderating the anxiety – performance relationship: Testing the prediction of processing efficiency theory in simulated rally driving
- Is Flow Really Effortless? The Complex Role of Effortful Attention
- An external focus of attention promotes flow experience during simulated driving