Hydrogen from Natural Gas

STUART FEGAN GMB National Officer

UK decarbonisation context

- UK has cut green house emissions by 42% since 1990 baseline halfway to 2050 target (Paris Treaty)
- But little progress on heating and transport, air quality is still a big problem

The UK's heating system relies on gas

- 80% of the UK's 26 million homes are heated by gas (2018)
- Homes not connected to Gas Grid are 1.5 times more likely to be fuel poor than national average.
- Currently1.5 million new gas boilers are installed in the UK each year.

Advantages of hydrogen

100% hydrogen in the gas grid

- Iron Mains Replacement Programme already halfway completed programme is for safety reasons but polyethylene pipes are also able to transport hydrogen.
- New boilers/cookers will be needed, but not wholesale changes to central heating system –
 far lower cost and disruption to consumers.
- Town Gas was 50% hydrogen wholesale conversion to natural gas in 1970s The UK has
 done this before
- Hydrogen can be stored seasonally batteries provide power for hours not months!

Hydrogen blending

- Blending at up to 20-30% likely to be possible without conversions to appliances
- Allows gas system to store excess renewable electricity through hydrogen

Safety of hydrogen in the home:

BEIS Hy4Heat programme – runs until 2021

100% hydrogen in the gas distribution network:

Next phase of H21 Leeds project (Northern Gas Networks) – runs until 2020

Industrial hydrogen with gas grid blending:

- HyNet project (Cadent Gas) being developed in the North West of England
- Conclusions from HyDeploy project due in 2020

Focus on gas today, but electrolysis and bio-hydrogen are also important:

- Steam methane reformation produces half of global hydrogen cheapest and most widely-used method
- SMRs in the UK e.g. Grangemouth, Teesside
- Hydrogen from methane with carbon capture essential:
 - Already proven in Texas, Canada, Japan, and Hong Kong.
 - ➤ Permanent CO₂ storage in Norway offshore since 1996
- UK offshore has more than 100 years of CO₂ storage and fields ready for decommissioning or CCS are near to industrial clusters
- Committee on Climate Change: CCS is vital for meeting the 2050 target costs could be twice as high without CCS

Tech. exists today: need to cut cost & increase CO₂ capture efficiency

Our big industrial challenge

We have seen too much decarbonisation through offshoring in recent decades...

Off-shoring emissions

Between 1997 and 2015:

Greenhouse gas emissions

UK production: ——33%

UK consumption: 4%

Carbon imports:

31%

Manufacturing share of GVA

1997: 17%

2015: 10%

Closure of Redcar steelworks in late 2015 caused nearly half the fall in industrial emissions in 2016 – but 2,000 jobs lost! If we do nothing this pattern continues...

Re-shoring responsibility

- As domestic heat projects work through, opportunity to start using more hydrogen in industrial clusters
- 2. Tied into CCS development and linked to electricity system
- With low carbon hydrogen production established, source of hydrogen for domestic heating and grid balancing

4. And source of hydrogen for transport – trains, ships, HGVs, fleet vehicles... and

And finally, let's not forget power!

- NetPower gas-fired power station with built-in CO2 capture has just completed a 50MW demonstration in Texas.
- Short answer is it works!

Could this be a route back for CCS in the power sector?

STUART FEGAN GMB National Officer

