Whole energy systems and net zero for Kernow

Richard Lowes <u>r.j.lowes@exeter.ac.uk</u>

What is whole energy systems thinking?

- Considering different elements of the energy system together?
 - Heat, transport, industry, electricity?
- Considering different vectors together?
 - Gas, electricity, solid fuels,
- Considering non-technology elements too?
 - Politics, democracy/citizens, environment, consumption, industry

& Industrial Strategy

Thinking about elements of the energy system in isolation *already* no longer works

- Transport is becoming electrified
- Some heating is already electric
- Electricity is becoming an increasingly important energy vector
 - Can be very low carbon
 - Renewable electricity potential for Cornwall is very high
- Whole systems thinking becomes even more true when we think about fully sustainable energy systems

#electrifyeverything?

- Electricity must become the key energy vector
 - Electric vehicles and electrified heating are the major changes
- Zero carbon implies no fossil fuels are combusted
 - Unless carbon capture can work
- Only the most sustainable bio-energy passes
 - Wastes e.g. from farms and kitchens
 - But some industries need this (maybe HGVs and industry

The key to tackling climate change: electrify everything

By David Roberts | @drvox | david@vox.com | Updated Oct 27, 2017, 8:48am EDT

(Shutterstock)

Tackling climate change is a complicated undertaking, to say the least. But here's a good rule of thumb for how to get started:

Electrify everything.

Figure 3.18: Energy flows in our scenario – from supply to demand. Numbers used here are rounded up or down to the nearest TWh and so inputs and outputs may not add up exactly.

Key technology unknowns

- Energy storage and the need for additional electricity capacity is a big unknown
 - Cheap storage facilitates renewables and electrified heat (peaky) and transport better
- How does the gas grid fit in?
 - No fossil fuels mean it can transport only sustainable biogas or clean hydrogen
 - Is it used for peaking only? Or is it stranded?
- How much cheaper will offshore wind and solar photovoltaic go?
 - Further price drops makes #electrifyeverything make even more sense

Demand reduction and response

- The most efficient sustainable energy system will be a flexible one (see Ovo, 2018)
 - All sectors of demand need to talk to each other
 - My fridge shouldn't be on when my heat pump is
 - My car should only be charging when power is cheaply available
 - My car should power my house when power is expensive (V2G)
- Long term reductions in demand make the system a lot easier to manage
 - Reducing thermal demand of buildings is also highly important for this flexibility and enhances heat electrification
 - Don't even attempt to decarbonise without also supporting people to travel less in vehicles

Energy Policy Group

Governance overhaul needed!

- A move to energy services
- New business models
- P2P buying & selling
- FV roll out
- Storage

- Clear Government commitment to transformation
- An new Energy Transformation Committee
- Committee on Climate Change

Transformation Committee Ofgem reform

- Data body & market monitor
- DSPs (Distribution Service Providers)

An IISO (integrated,

A codes manager

Zero carbon is (in part) possible already

- Getting someone to cycle/walk rather than driving is a big step in decarbonisation – that journey is zero carbon
- Dramatic price drops have created optimism
- But, the rate of change needed for 2030 is dramatic
 - It involves the 'stranding' of working cars and heating systems
- But, stranding is not necessarily a bad thing
- Finally, there is a local coordination role required to ensure that all of the whole system elements come together and work properly. Perhaps that role (or part of it) is for Cornwall Council.

References

- BEIS (2018), Energy flow chart, <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/727620/Energy_Flow_Chart_2017.pdf</u>
- Centre for Alternative Technology, (2013), Zero Carbon Britain, Rethinking the Future, https://www.cat.org.uk/info-resources/zero-carbonbritain/research-reports/zero-carbon-rethinking-the-future/
- Ovo, (2018), Blueprint for a post carbon society: How residential flexibility is key to decarbonising power, heat and transport,
 https://www.ovoenergy.com/binaries/content/assets/documents/pdfs/newsroom/blueprint-for-a-post-carbon-society-how-residential-flexibility-is-key-to-decarbonising-power-heat-and-transport/blueprintforapostcarbonsocietypdf-compressed.pdf
- Vox, (2017), the key to tackling climate change is tot tackle everything, <u>https://www.vox.com/2016/9/19/12938086/electrify-everything</u>.

