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INTRODUCTION 
Since the pioneering work of Holland [14], Genetic Algorithms (GA) have become one of the most 
popular optimization techniques. The main reasons behind this success can be attributed to their 
effectiveness in exploring massive search spaces with little tendency to be deceptively attracted by 
local optima, and inherent capability of handling both real and discrete variables. Furthermore, they 
are relatively easy to code and are somewhat problem domain independent, even though prior 
knowledge and fine tuning are often required to achieve best performances. Broadly speaking, GA 
is a search procedure inspired by natural selection and genetics and it is based on the concept of 
“survival of the fittest”. Given an initial population of “individuals”, recombination and selection 
are repeatedly performed until a set of good enough solutions is found.  
 
The great potential of GA was indubitable and apparent to the scientific community, but it was only 
with Goldberg [13] that it became evident that they could be applied to a broad range of engineering 
problems. With Goldberg’s work, the transition between single-objective GA to multi-objective GA 
(MOGA) was first paved and a manifold of methodologies have been flourishing in the literature 
ever since. 
 
Many real-world optimization problems involve multiple objectives that need be considered 
simultaneously. If these objectives are conflicting, as it is usually the case, a single solution optimal 
for all the objectives can not be found. As a consequence, the assessment of the quality (fitness) of a 
set of solutions poses a serious problem and calls for a method that provides a formal definition of 
the qualitative notion of compromise. The great majority of MOGAs presented to date  
[5;10;15;16;20;22;23],  solve this predicament through the concept of Pareto optimality (in the 
remainder of the paper the term Pareto optimality will be used quite interchangeably with Pareto 
efficiency), which is exploited to rank the solutions generated and therefore to drive the search for 
better ones. 
 
It is well known that as the number of objectives of a Multi Objective Problem (MOP) increases, 
the number of Pareto efficient, i.e. equally good solutions, quickly becomes vast. As a consequence, 
all Pareto-based ranking techniques suffer the same limitations: the genetic algorithm search 
worsens (low selective pressure) and decision makers are presented with an overwhelming number 
of equally optimal solutions (parameter sets). While, to the best knowledge of the authors, the 
literature lacks a rather theoretical and unified approach to tackle the former issue, the latter has 
been investigated in depth. The main principle is to exploit the vague idea that the user has about 
what kind of solutions might be preferred to guide and focus the search. Coello Coello [3] and 
Branke [1] provide a rather comprehensive survey of attempts to handle preferences: following the 
definition proposed by Van Veldhuizen [21] who suggests the articulation of preferences might be a 
priori, progressive or a posteriori (i.e. performed before, during or after the optimization process) 
most Evolutionary Multi-Objective Optimization (EMO) approaches belong to the latter category. 
Although, it has been found that such methods, besides allowing for a more fine-grained selection 
of those alternatives that are considered the most interesting from the user’s point of view, might 
also speed up the search [1;2], they all have been shown very sensitive to different problem 
domains [8] and to little variations of parameters that control the preferences specification [6].  
 
Almost contemporarily, Das [7] introduces Preference Ordering (PO), a Pareto-based optimality 
condition. In effect, he shows that Preference Ordering is a generalization of Pareto efficiency and 
that it provides a more stringent criterion than Pareto dominance to compare solutions to MOPs. 
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Preference Ordering has been applied successfully in a number of studies as a post processing 
routine: once an optimization algorithm has found a set of Pareto optimal solutions, PO can be 
applied to sieve through them so that the decision maker is presented with a manageable number of 
high quality solutions to assess. Nonetheless, despite its interesting features, to the best knowledge 
of the authors PO has never been exploited as an optimality condition to drive the search of an 
MOGA. 
 
This paper presents a new MOGA, the Preference Ordering Genetic algorithm: POGA. It is largely 
inspired by NSGA-II [10], a most acknowledged MOGA that has proved successful in a number of 
applications, but in contrast it embodies Preference Ordering in its ranking scheme to drive the 
search for better solutions. The paper is organized as follows: the first section provides the 
theoretical background and a detailed description of the algorithm is given in the second one. The 
third and fourth sections compare the results of the application of the two algorithms to the 
optimization of a test function and to the automatic calibration of an urban drainage model 
respectively. A particular emphasis is given to the issue of scalability and to support that POGA is 
particularly efficient to tackle highly dimensional MOPs. Finally, the results are discussed and 
unexplored research issues suggested. 

FROM PARETO EFFICIENCY TO PREFERENCE ORDERING 
The multi-objective optimization problem (MOP) can generally enough be stated as [4;7]: 
Definition (MOP). Find a vector * * * * T

1 2[ , ,..., ]nx x x=x  such that  
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where n is the dimension of the decision variables vector, m is the number of objectives for the 
MOP, l is the number of inequality constraints g(x), L the number of equality constraints h(x).  D 
represents the search space (also referred to as decision space), i.e. the Euclidean space that is 
defined by the set of all n-tuples of real numbers, denoted by nR . This definition could be easily 
extended to situations where the variables take values on other sets. The constraints g(x) and h(x) 
act on D as to defining a subset Ω, which represent the feasible region for the MOP. Any point x in 
Ω represents a feasible solution; the function f maps Ω into the F that is a subset of the objective 
space, denoted by mR . 
Equations (1) are general enough to accommodate different problem definitions (maximization 
instead of minimization and different forms of equality/inequality constraints) since it is always 
possible to rewrite the problem equations in the form introduced above. 
Definition (Ideal solution). A point * * * * T

1 2[ , ,..., ]U U U U
nx x x=x  such that  
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1 2( ) min ( ) [min ( ),min ( ),..., min ( )]U U U U U

mD D D D
f f f

∈ ∈ ∈ ∈
= =

x x x x
f x f x x x x

   (2) 

is the ideal solution and *( )Uf x is the ideal vector (also referred to as utopia point or shadow 
minimum) for the MOP. In words, a point Ux* is an ideal solution for an MOP, and consequently 

*( )Uf x  is the utopia point, if all the individual objectives are contemporarily optimized. 
The problem defined by equations (1) is well posed only if the objective functions f1,…, fn are non 
conflicting. When this holds, if the ideal solution lays in the feasible region, i.e., if *U ∈Ωx , then it 
is the solution to the optimization problem. Unfortunately, this is seldom the case. Most engineering 
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problems naturally lead to the concurrent optimization of a pool of conflicting objectives. In such 
situations, a single (utopical) solution is not attainable; instead, one might be interested in finding a 
set of good compromises (“trade-offs”). Pareto optimality provides with a formal definition of the 
intuitive yet qualitative notion of compromise. 
Definition (Pareto Dominance and Pareto Optimality). The vector i( )f x  is said to dominate the 

vector l( )f x , denoted i l( ) ( )  ≺f x f x , if i l( ) ( )i if f ≤ x x  for all  i  ∈  {1,2,…,n} and i l( ) ( )j jf f < x x  for 
some j ∈ {1,2,…,n}. A point x* is said to be Pareto optimal or Pareto efficient for the MOP if and 
only if there does not exist x ∈  Ω such that ( ) ( )  ≺ *f x f x . In words, a point x* is Pareto efficient if 
there does not exist a point x in Ω that would achieve a better value for one of the objectives 
without worsening at least another. 
 
It is easy to show that Pareto dominance induces a partition of the objective space. Without loss of 
generality we restrict our reasoning to the feasibility region Ω. Suppose, for instance, that within Ω 
there exists a point A; its coordinates in Ω define the regions where points that dominate A and that 
are dominated by A could lie. We denote these regions A

+Ω  and A
−Ω  respectively. Figure 1 is a 

pictorial representation of A
+Ω  and A

−Ω  for two and three dimensions. 
 

    
Figure 1: Representation of the partitioned induced by Pareto dominance onto the two and three-dimension objective 
spaces {I1, I2} and {I1, I2, I3}. 

Definition (Pareto optimal set). For a given MOP, the Pareto optimal set denoted P*, is defined as: 

* : { ( ) ( )}= ∈Ω   ¬∃ ∈Ω ≺x | x' f x' f xP  

Definition (Pareto front). For a given MOP and a given Pareto optimal set P*, the Pareto front is 
defined as: 

* *
1 2: { ( ( ), ( ),..., ( )) | }nf f f=  ∈ f = x x x xPF P  

As the number of objectives increases, the PF* of an MOP quickly becomes vast. An intuitive 
explanation is suggested by Figure 1: moving from a two to a three-dimension objective space, 
( A

−Ω + A
−Ω ) grows at a lower rate than Ω. 

This phenomenon has a great impact on the performance of the optimization algorithms that relies 
on Pareto optimality principle to drive their search for good solutions. A criterion more stringent 
than Pareto optimality, yet general, would be highly desirable. On these premise, Preference 
Ordering [7] comes to rescue. 
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Definition (Efficiency of order). A point x*∈ Ω is considered efficient of order k if f(x*) is not 
dominated by any member of PF* for any of the k-element subsets of the objectives. In words, a 
point is efficient of order k if is Pareto optimal in all the m

kC  subspaces of Ω obtained considering 
only k objectives at a time. It is clear that the efficiency of order m for an MOP with exactly m 
objectives simply enforces the Pareto optimality; therefore Preference Ordering is an extension of it.  
 
Figure 2 illustrates the efficiency of order for a set of points in a three-dimensional objective space 
Ω: amidst this set, the point efficient of order 2 is the only point Pareto optimal for all the 3 two-
dimensional objective spaces obtained by considering all combinations of the three objectives of Ω, 
taken two at a time. 

 
Figure 2: Pictorial representation of a set of points in a three-dimensional objective space and in its three two-
dimensional projections onto the main planes. Squares and circles represent dominated and non dominated points 
respectively; the triangle represents the Pareto optimal point efficient of order 2. 

Claim (C1): In a three-dimensional space there can be no more than one point efficient of order 2. 
This is a rather counterintuitive and interesting feature of Preference Ordering. 
 
Proof: Suppose that A and B are two points in a three-dimensional objective space. Let us suppose 
that A and B are both efficient of order 2 and that f1(A) < f1(B). It follows that for the objective 
space {I1,I2}, the following relations must hold 

1 1 2 2(A) (B) (B) (A)f f f f<   ∧ <        (3) 

 



 6

From the first relation of (3), it follows that for the objective space {I1,I3} the following must hold 

1 1 3 3(A) (B) (B) (A)f f f f<   ∧ <        (4) 

and from the second relation (3) follows that for {I2,I3} it must be 

2 2 3 3(B) (A) (A) (B)f f f f<   ∧ <        (5) 

The second relations of (4) and (5) cannot both be contemporarily satisfied, unless f3(A) = f3(B). 
But according to relations (4) and (5), this implies that neither A nor B are efficient of order 2. In a 
similar way, it can be verified that the proof holds for f1(A) > f1(B). 
 
A graphical explanation of C1 is presented in Figure 3. As introduced above, given a point A in an 
objective space Ω, Pareto optimality delimits A

+Ω and A
−Ω . We denote {I ,I }i j Ω , {I ,I }

A
i j +Ω  and {I ,I }

A
i j −Ω  

their projections onto the two-dimensional spaces for every i,j = 1,2,3 with i ≠ j, respectively. Let us 
assume that A is efficient of order 2. For any point B to be efficient of order 2, its projections onto 
the plane IiI,j should lye in ( {I ,I }i j Ω  - {I ,I }

A
i j +Ω  -  {I ,I }

A
i j −Ω )  for every i,j = 1,2,3 with i ≠ j. It can be 

seen that A is the only such a point. 
  

 
Figure 3: Graphical interpretation of Claim C1. 

The condition of efficiency of order can thus be used to help reduce the number of points in a set by 
retaining only those that are regarded as “best compromises”. In fact, it is intuitive to understand 
that the less extreme components a point has, the more likely it is to be efficient of order. When the 
number of points selected is still considerable, one might resort to an even more stringent criterion 
to sieve through: 
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Definition (Efficiency of order k with degree z): A point x* is said to be efficient of order k with 
degree z if not dominated by any member of P* for exactly z out of the possible m

kC  k-element 
subsets. 
 
It is now worth pointing out that, as opposed to the condition of efficiency of order, the condition of 
efficiency with degree favours solutions that have extreme components. Therefore one should 
carefully orchestrate the cooperative usage of these conditions of efficiency. Let us suppose that the 
MOP at stake has m objectives. If the Pareto set P* identified is too numerous, one could resort to 
the condition of efficiency of order to identify the subset P*

k that consists of solutions in P* that are 
efficient of order k. If P*

k is still too numerous, one could retain only those solutions that are 
efficient with the highest degree, i.e. solutions in P*

k that are not dominated by any point in P* for 
the most of the possible 1

m
k −C  (k-1)-element subsets. If k = m, i.e. if there are no solutions in P* that 

are efficient of order m-1, applying the condition of efficiency with degree results in the 
identification of the solutions that lay at the edge of the Pareto front. Therefore, one should be 
cautious in considering which option is most suitable for a particular purpose. 
 
The Multi Objective Genetic Algorithm introduced in this paper, POGA, embodies Preference 
Ordering in the form of the condition of efficiency of order into its ranking scheme. The following 
section describes in details the structure of the algorithm.  

THE PREFERENCE ORDERING GENETIC ALGORITHM: POGA 
As stated in the introduction, the motives behind the development of a new technique for Multi 
Objective optimization lye on the inadequacy of Pareto-based GA to deal with highly dimensional 
objective spaces. In these situations in fact, Pareto-dominance ranking approaches fail in 
maintaining a sufficiently high selective pressure throughout the search process, which 
consequently stalls prematurely. On these premise, we present the Preference Ordering Genetic 
Algorithm: POGA. 
 
POGA inherits from NSGA-II its evolutionary traits:  selection, recombination and composition are 
retained unaltered and they are performed in the same order: Figure 4 presents the flowchart of 
POGA, which can be summarized as follows: 
 

(i) Generate a random initial population P0 of size s; 
(ii) Evaluate the population (objectives and constraints) using a fast sorting method (fast-

non-dominated-sort); 
(iii) Rank the individuals of P0; 
(iv) Create a child population through selection and recombination operators; 
(v) Combine the child and parent population into a compound population; 
(vi) Rank the compound population; 
(vii) From the compound population, place the s best-ranked solutions to the next generation 

population; 
(viii) If there is a tie between which equally-ranked solutions to be taken from the compound 

population to fill the next generation population, resort to the crowding distance. This 
step favors solutions that rest in less crowded portions of the objective space so as to 
ensure a well spread Pareto front; 

(ix) Repeat steps (v) to (viii) until the stopping criteria are met. 
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Figure 4: Flowchart of POGA. 

The two algorithms differ fundamentally in the ranking procedure adopted. While NSGA-II exploits 
the Pareto efficiency criterion to order the individuals of a population (steps (iii) and (v)), POGA 
relies on Preference Ordering in the form of condition of efficiency of order. In the remainder of the 
paper we denote this condition POk to distinguish it from that of order and degree, which is denoted 
POk,z. When such a distinction is not relevant for the reasoning, PO is employed instead. Figure 5 
exemplifies the ranking procedure performed by POGA. At the iteration t, the parent population Pt 
and the child population CPt are combined into the compound population Ct. First, Pareto efficient 
individuals of Ct are given rank 1 and grouped into the subset R1. Pareto efficiency (PE) is then 
applied to {Ct - R1} to identify R2; the process continues until all individuals Ct have been ranked, 
i.e. the subset {Ct – Rr} is empty, where r is the last (worst) rank computed. Last, the subset of the 
best individuals, R1, is further ranked through Preference Ordering. The pseudo code of the ranking 
procedure implemented in POGA follows: 
 
    for every generation t 
        set the worst rank found so far rt* to 0 
        identify the Pareto Set Pt* of the population Pt 
        while Pt* is not empty 
            if rt*==0 
                rank individuals Pt* according to POk 
    update rt* 
            else 
                rank individuals Pt* according to PE 
            end 
            identify the Pareto Set Pt* of Pt = Pt – Pt* 
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            update rt* 
        end 
    end 

 

 
Figure 5: Ranking procedure of POGA. The Pareto efficient individuals (R1) of Ct, are ranked through POk (the darker 
the shade, the better the individual). In this example, after all individuals in R1 are inserted into Pt+1, the crowding 
distance is used to identify the individuals of rank 2 (R2) that will complete the next generation population.  

The advantage of this procedure over the standard NSGA-II is evident. When two solutions are 
assessed to select which will be either part of the mating pool (selection stage) or of the next 
generations’ population (composition stage), their objective and constraint values are first translated 
into ranks and compared (we chose to implement for POGA and NSGA-II the scheme Constraint-
First-Objective-Next, CFON). If this is not enough to state the winner, then the ranking scheme 
resorts to non rank-based information. NSGA-II and POGA adopt crowding distance as such a 
measure, which relates to the sparseness of solutions in the objective space. Needless to say, the 
more solutions present the same rank, the more often such non rank-based information determines 
the best solution. Since POk refines the rank of equally Pareto efficient solutions, the number of 
comparisons resolved by rank values is in favor of POGA. 
 
Das (1998) claims and proofs that: 
 
Claim 2 (C2). If x* is efficient of order k, than it is efficient of order k+1. 
 
In addition, we submit that: 
 
Claim 3 (C3). If x* is not efficient of order k, than it is not efficient of order k-1. 
 
The proof immediately follows from C2. By induction, it is clear that if x* is not efficient of order k, 
than it is not efficient of order j, for any j < k. The algorithm that we propose to compute the order 
of efficiency of a set of solutions to an MOP is based on C3 and it is described by the following 
pseudo code:  
 
 
 
 

Pt 

cPt 

Ct 

Pt+1 

I2

R1 

R2 

R3 

POk

PE

I1
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    set the rank of every solution j∈ Pt rankj = 0 
    set i = 0 
    set the flag isefficientj = 0 for every solution j 
    for every (m-i)–element subset of the m objectives of the MOP 
        for every solution j 
            if isefficientj == 1 
     break 

            if j is dominated by any other solution ∈ Pt for any of the m
m iC −  (m-i)–element subsets 

                do not update rankj and change the flag of j  isefficientj = 1 
            else 
                rankj = rankj + 1 
            end 
        end 
        i = i +1 
    end 

 
If researchers have successfully applied PO as a post processing routine in the attempt to further 
rank the set of the best solutions found at the end of the search, to the authors’ best knowledge 
POGA is the first algorithm that embodies PO in the ranking procedure. 

TEST FUNCTION 
To assess the behaviour of the Algorithm presented and to compare it to NSGA-II we chose the test 
function DTLZ2 [11], which is often used to tests the scalability of MOGAs [1]. DTLZ2 is 
constructed as follows: 

1 1 2 1

2 1 2 1

3 1 2

min ( )

{ 0 1 1,..., }
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where n is the number of decision variables, m is the number of objective functions and xM  are the 
last M=(n-m+1) decision variables. The difficulty of this problem is represented by the huge number 
of local Pareto optimal fronts (11M-1) that can attract the solutions generated by the MOEA before 
reaching the global Pareto optimal front.  
 
To compare the performance of the two algorithms we adopted a set of metrics commonly used in 
the literature. 
 
Two set Coverage (CS) [24]. This metric relates to the relative coverage of two sets. 
Consider 'X , ''X  ⊆  'X as two sets of points in the objective space of an MOP. CS is defined as 



 11

|{ ''; ' : } |( ', '')
| '' |

X XCS X X
X

∈ ∃  ∈  x'' x' x' x''≺�  

If all the points in X’ dominate or are equal to all points in ''X , then CS( 'X , ''X ) = 1; if all points 
dominate in ''X dominate the points in X’, CS( 'X , ''X ) = 0. Since, in general CS( 'X , ''X ) ≠ 1-
CS( ''X , 'X ), both values should be considered. 
 
Generational Distance (GD) [4]. This metric relates to the average distance of a set of points from a 
Reference Set (RS) and is defined as 

2 1/ 2

1

( )
n

i
i

d
GD

n
=
∑

�  

where n is the number of points in the set, d is the Euclidean distance between each point in the set 
and its nearest RS-point. 
 
Normalized Hyper Area (Hn). This metric relates to the sparseness of a set of points and is a 
variation of the one used by [22]. It measures the fraction of the space between the axes origin and a 
reference point that is dominated by the members of the set. It is defined as 

*

1

n

i
i

O

hv
Hn

hv
=�
∪

 

where n* is the number of non-dominated points in the set, hvi is the hyper-volume enclosed 
between the point i and the Reference Point (RP) and hvO is the hyper-volume enclosed between the 
origin and the reference point. 
 
Results 
In order to assess the scaling behaviour of POGA and NSGA-II, the algorithms were applied to the 
optimization of DTLZ2 with an increasing number of objective functions. Since, according to 
Claim C1, the difference between Pareto Optimality and Preference Ordering ranking procedures is 
almost negligible for a three-dimensional MOP, it was decided to focus the analysis on four, five 
and six objectives, i.e. m = 4,5 and 6 respectively. The value of M was set to 10 for all the three 
tests; consequently, n varied from 13 to 15. Both POGA and NSGA-II used a binary encoding 
despite some authors suggesting a real variable representation, because a better parameter tuning 
was achieved. The population was set to 100 individuals for all the experiments. This is in contrast 
to the methodology used by Branke [1] where the population size was varied with the number of 
objective functions to maintain a somewhat constant proportion of non dominated-solutions within 
the population, following some empirical findings provided in Deb [9]. The aim was to limit as 
much as possible the noise when comparing the behaviour of different algorithms. The choice made 
in the present study is motivated by the fact that the implicit purpose of the test presented herein is 
to compare the efficiency of two optimality conditions. The single point cross over and uniform 
mutation were performed at the rate of .6 and .01 respectively. 
 
Table 1 summarises the statistics of the metrics GD and Hn for the two algorithms considered. To 
compute GD, the RS was formed by generating 1000 points uniformly distributed over the true 
Pareto front, which will be referred to as PF*

true. To compute Hn, the points [1,1,1,1], [1,1,1,1,1] 
and [1,1,1,1,1,1] were chosen as the RP for m = 4,5 and 6 respectively. 
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Table 1: Performance values of NSGA-II and POGA applied to the optimization of three implementations of the test 
function DTLZ2, i.e. is with m set to 4, 5 and 6 respectively. 

   NSGA-II POGA 

Mean 0.2487 0.2576 
m = 4 

Std 0.0159 0.0187 

Mean 0.3288 0.3053 
m = 5 

Std 0.0282 0.0139 

Mean 0.6449 0.5178 

GD 

m = 6 
Std 0.0601 0.0315 

Mean 0.5923 0.5941 
m = 4 

Std 0.0072 0.0073 

Mean 0.6403 0.6471 
m = 5 

Std 0.0072 0.0130 

Mean 0.6350 0.6820 

Hn 

m = 6 
Std 0.0191 0.0091 

 
As the values of GD suggest, after 200 generations all the MOGA converged fairly well to PFtrue. It 
is interesting to note that as the number of objectives (m) increases, POGA performs progressively 
better than NSGA-II, as both GD and Hn values clearly show. 
 
Figure 6 shows a pictorial representation of the CS-metric values for two algorithms. Each graph 
represents a box plot of the CS values computed on the last generation solutions of each run for 
m=4,5 and 6 respectively. The plot at the top right relates to CS(POGA,NSGA-II), while the plot at 
the bottom left to CS(NSGA-II, POGA). As the number of objectives (m) increases, a progressively 
higher number of solutions found by NSGA-II are dominated by those found by POGA; conversely, 
a progressively smaller number of those found by POGA are dominated by those generated by 
NSGA-II.  

 
Figure 6: Box-plot of the CS values for the three MOGA applied to DTLZ2. The graph (i,j) represents the statistics of 
CS(i,j) on the 10 runs performed for m = 4,5 and 6. 
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This pattern supports the argument that the ranking procedure adopted by POGA provides it with a 
strong advantage over conventional Pareto-based MOGA when dealing with highly-dimensional 
MOPs. 
 
Figure 7 depicts the generation-wise Pareto efficiency plots of a run for the three implementations 
of the function DTLZ2, i.e. for m = 4,5 and 6. At each generation, solutions found by the two 
algorithms are grouped and assessed through Pareto efficiency and individuals dominated are 
represented by dots. The individuals found by NSGA-II are grouped in the upper half of each plot, 
while those found by POGA in the lower half. It is interesting to note that, after a few generations 
where the two algorithms perform in a similar way, POGA takes over and consistently finds better 
solutions. 

 
Figure 7: Generation-wise Pareto efficiency plot for each of the three implementations of the test function DTLZ2 (m = 
4,5,6). 

AUTOMATIC MODEL CALIBRATION 
The Preference Ordering Genetic Algorithm was tested on the calibration of BEMUS, a storm 
sewer network, physically-based, distributed model. This section is organised as follows: first, the 
description of the model, the catchment, and the problem of the automatic model calibration are 
given. Then, the results of the application of POGA are presented for the calibration and validation 
data sets. Finally the performance of POGA is compared to that of NSGA-II. 

Description of the model 
The described algorithm was tested on the calibration of a storm sewer network model using 
experimental rainfall-runoff data. The BEMUS simulation model was used, which is a physically-
based, distributed model. It has two components: (i) computation of surface runoff hydrographs, 
and (ii) simulation of flow in the sewer network. The methodology applied in the first 
(“hydrologic”) component and the original version of the model were described by Radojković and 
Maksimović [19]. An updated version with improved pipe flow simulation was developed by 
Djordjević [12].  
 
Catchment decomposition. The catchment is divided into smaller areas –  subcatchments – that are 
drained into particular sewer network nodes. Each subcatchment is further divided into impervious 
(roofs, streets, etc.) and pervious parts (parks, gardens, etc.). Runoff from each of these surfaces is 
calculated separately (in accordance with their areas), summed up, and then introduced into the 
network nodes along with the dry weather flows.   
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Figure 8: Surface runoff phases 

Surface retention. Filling up of small surface holes (phase 1 in Fig. 8) is calculated via the Linsley 
empirical formula:  

 [ ]e d d( ) ( ) 1 exp( )i ih t h t h h h= − − − /  

where eh = effective rainfall depth at time t , ih = total rainfall depth and dh = surface-dependant 
empirical parameter denoting the equivalent thickness of the layer of water equally distributed over 
the entire pervious or impervious area.  
 
Infiltration. By combining mass and momentum conservation equations for vertical infiltration in 
unsaturated porous media, and assuming that the soil moisture at the beginning of rainfall is known, 
an ordinary differential equation is obtained, which is solved analytically. In doing so, it is 
necessary to know the time between the beginning of the rainfall and the moment of saturation of 
surface soil, which is determined numerically from the momentum conservation equation written in 
the integral form. This approach is commonly referred to as Green-Ampt modification of the 
Richards equation, that reads:  

 c s
s c s

c s 0

ln ( )h H kH H h t t
h H ε

⎛ ⎞+
= + + −⎜ ⎟+⎝ ⎠

 

where H = depth of the wet front reached at time t , sH = wet front reached at time st , st = time 
from the beginning of rainfall to total surface soil saturation, ch = absolute value of  referential 
capillary height, sk = Darcy coefficient for saturated soil and 0ε = effective porosity. By subtracting 
the infiltration on pervious areas and surface retention on all areas from the rainfall intensity, the net 
(effective) rainfall ei  is obtained. Other hydrologic losses (e.g. evapotranspiration) are considered to 
be negligible, which can be justified for short-term events.  
 
Surface flow and gutter flow. Each subcatchment area is replaced by two equivalent rectangular 
areas with constant slopes, from which the water flows to the gutter (as shown in Fig. 9). This way 
the 2D overland flow is replaced by two 1D flows. 1D schematized surface sheet flow is described 
by mass and momentum conservation equations. By neglecting some terms and after certain 
transformations, these are reduced to kinematic-wave equations:  
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where h  = flow depth, q = discharge per unit width, x  = coordinate in the flow direction 
(perpendicular to the gutter in this case), 0I = bed slope, g = gravitational acceleration, ρ = water 
density, bτ = bed shear stress and iτ = additional shear stress due to the influence of the inertial 
force of rain drops. By supposing that the water level profile is of the parabolic shape, these 
equations are reduced to an ordinary differential equation, which is solved by the Euler modified 
method. Gutter flow is described with the analogous equations (by taking lateral inflow instead of 
effective rainfall), and solved in a similar way. 
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Figure 9: Catchment schematization 

Source control. It is possible to define a source control technique, i.e. which portion of roofs ( roofp ) 
and of other impervious areas ( impp ) is drained directly to the sewer system, and from which 
portion of these areas the water is spilled on the pervious areas (where it is partly infiltrated) prior to 
reaching the sewer system. Values of these two parameters, which can be between 0 and 1, crucially 
influence the runoff volume. 
 
Sewer network flow. Muskingum-Cunge Variable Parameter method [18] is applied for solving 
kinematic-wave equations to simulate flow in sewer pipes:  

1 1
1 1 2 3 1

j j j j
i i i iQ C Q C Q C Q+ +
+ += + +  
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where Q  = discharge,  ψ  = spatial weighting coefficient and  Cr = Courant number. At each step, 
ψ  and Cr  are iteratively calculated as averages of local values at four computational points in x - t  
plane (covering cross-sections ix  and 1i ix x x+ = + ∆  and time levels jt  and 1j jt t t+ = + ∆ ), as 
Cr c t x= ∆ /∆  and ψ = 0(1 ) 2Q xI Bc− /∆ / , where c dx dt dQ dA= / = /  = wave celerity, A  = cross-
sectional area and B  = water table width. By such a choice, numerical parameters are linked to the 
physical parameters (pipe roughness, bed slope and current cross-section geometry) so that 
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numerical diffusion of the finite difference solution of kinematic wave equations matches the actual 
diffusion which would be obtained by the more complete diffusion wave equations. Pipe roughness 
is introduced through the assumption (inherent to kinematic wave model) that the friction slope is 
equal to the bottom slope.  
 
The described pipe flow model is applicable to networks in which backwater effects are negligable 
and surcharging is rare (steep, not overloaded systems), otherwise the full dynamic model is 
required. The kinematic wave model is adopted here beacuse it is much faster and yet reasonably 
accurate for the catchment and the events described in the sequel. 

Description of the catchment 
The Experimental urban catchment Miljakovac (in Belgrade, Serbia) covers 25.5ha, 10.5% of which 
are roofs and further 27.3% are other impervious areas (Fig. 10a). Storm sewer network consists of 
112 pipes, diameters ranging from 300 to 600mm, total length 4.1km. Two flow gauges recorded 
the runoff, one from the south-west part of the catchment and one from the entire area. 
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Figure 10: Miljakovac catchment 

Problem formulation 
The problem of the multi-objective calibration of a model can be generally stated as follows [17] 

min ( )
∈Ω

 
θ

f θ
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where f is a m-dimensional vector-valued objective function, θ is the model parameter set and Ω is 
the feasible parameter space. For this study, the following functions were chosen to measure the 
agreement between model-simulated and observed outflows through: 

Overall volume error.    ( ) l ( ) l
1

1 1
/( )

n n

i i i
i i

f Q Q Q
= =

−∑ ∑�θ θ  

Overall root mean square error (RMSE). ( ) l ( )
1

22

2
1

1 n

ii
i

f Q Q
n =

⎡ ⎤⎡ ⎤−⎢ ⎥⎣ ⎦⎣ ⎦
∑�θ θ  

Peak flow error.    ( ) l ( )3 max maxf Q Q−�θ θ  

Time to peak.     ( ) l4 arg max ( )arg max QQ
f t t−� θθ  

where  lQ  and Q(θ) represent the measured and simulated flow respectively and n is the number of 
observations. Since measurements from two gauging stations were available, it was decided to take 
into accounts 8 objective functions altogether for the purpose of calibration. In the remainder of the 
paper, ufi(θ) and dfi(θ) denote the objective function i for i=1,2,34 computed at the up-stream or 
downstream gauging stations respectively. Table 2 summarizes the parameters of the model 
BEMUS that are to be calibrated. 

Table 2: Parameter vector θ for the model BEMUS. 

PARAMETER NAME DESCRIPTION LOWER LIMIT UPPER LIMIT

P1 Retention capacity of pervious area (mm) .8 4 
P2 Retention capacity of impervious area (mm) .4 1 
P3 Darcy coefficient (m/s) .000001 .00000001 
P4 Soil porosity 0.3 0.55 
P5 Sub-catchment shape factor 0.1 10 
P6 Pervious area Manning factor 0.01 0.50 
P7 Impervious area Manning factor 0.01 0.05 
P8 Roofs drained to sewer system 0 1 
P9 Impervious areas drained to sewer system 0 1 
P10 Manning factor for pipes (*) 0.01 0.02 

(*)  All pipes in the sewer network are assigned the same Manning factor. 

Calibration 
The calibration of the model BEMUS was undertaken with POGA. Table 3 shows the main features 
of the rainfall event that was chosen for this purpose. 

Table 3: Details of the rainfall event used for the calibration of the model BEMUS. The number of observations, the 
sampling frequency and the type of event (Single-Burst/Multi-Burst) is reported. 

Event Name No. Observations (#) Sampling Freq. (#/h) Event Type 

Yu01 111 60 SB 
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For this application, the eight parameters of the simulation model were encoded as binary variables. 
After some trials with different selection and recombination operators, it was decided to implement 
the bit-wise tournament selection, single point cross over and uniform mutation. The population 
size, probability of crossover and mutation were set to 200, 0.6 and 0.005 respectively; the 
maximum number of generations per run was set to 100. Given the stochastic nature inherent in 
evolutionary algorithms, ten different runs were performed with POGA in order to take into account 
the effect of different random number generator seeds. The results are presented for the set S*POGA. 
This set is obtained by first taking the individuals efficient to the lowest order of each run 
performed with POGA and grouping them into SPOGA; then Pareto efficiency is performed on this 
set and only the non-dominated individuals are retained and grouped to form S*POGA. 
 
Table 4 summarizes the performances of the set S*POGA.  In order to infer the maximum information 
from the solutions found, S*POGA was ranked through Preference Ordering, by looking at both 
orders and degrees of efficiency of each set of parameters (POk,z). The results are then presented for 
group of solutions of the same rank and for group of ranks. S*POGA consists of 665 Pareto efficient 
solutions. There are 373 solutions efficient of order 8; 291 are efficient of order 7 and there is a 
single best solution (rank I), that is efficient of order 6. It should be noted that this solution is the 
best compromise amongst the entire set S*POGA and therefore, it represents an interesting parameter 
set from an engineering point of view. We denote this solution by +S*POGA. 

Table 4: Mean and standard deviation of the objective values of the solutions ∈ S*POGA. The statistics are presented 
for solutions grouped by rank (roman letters) and group of ranks; the number of solutions in each group is also given. 
Orders of efficiency are shown in the adjacent brackets. The last two groups are formed by collecting together 
individuals from rank I and II and from Rank I to III respectively. 

Rank No. of points Stat uf1(θ) df1(θ) uf2(θ) df2(θ) uf3(θ) df3(θ) uf4(θ) df4(θ) 

Mean 0.127 0.152 0.003 0.015 0.005 0.000 0.000 0.000 
I (6) 1 

Std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mean 0.166 0.104 0.004 0.011 0.003 0.023 0.000 0.000 

II (7) 291 
Std 0.025 0.025 0.001 0.002 0.002 0.009 0.000 0.000 

Mean 0.153 0.122 0.004 0.013 0.002 0.022 0.000 0.000 
III (8) 373 

Std 0.021 0.020 0.000 0.002 0.002 0.010 0.000 0.000 

Mean 0.165 0.104 0.004 0.011 0.003 0.022 0.000 0.000 
{I-II} 292 

Std 0.025 0.025 0.001 0.002 0.002 0.009 0.000 0.000 
Mean 0.158 0.114 0.004 0.012 0.002 0.022 0.000 0.000 

{I-III} 665 
Std 0.024 0.024 0.001 0.002 0.002 0.010 0.000 0.000 

 
For the remainder of the analysis, we restricted our attention to the set ES*POGA, i.e. the subset of 
S*POGA that comprises solutions of rank I and II. Table 5 summarizes the parameter values of 
ES*POGA and +S*POGA. 
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Table 5: Mean and standard deviation of parameter values for the set ES*POGA, that is the set formed by grouping 
together the individuals of S*POGA of rank 1 and 2; the parameter values of +S*POGA, the best solution in ES*POGA (i.e. the 
only efficient of order 6) are also presented. 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Mean 2.4887 0.40447 0.00705 0.41408 0.90181 0.23262 0.04259 0.67551 0.69146 0.01854ES*POGA 
Std 0.87129 0.00748 0.00228 0.07212 0.78126 0.12204 0.01014 0.19512 0.11808 0.00218

+S*POGA  2.5668 0.4 0.00875 0.33235 0.33205 0.43575 0.05 0.98436 0.47703 0.02 
 
As previously introduced, +S*POGA is an interesting solution from a practical point of view. It is, in 
effect, the solution amongst those collectively found by POGA that strikes the best balance of 
objective function values. Therefore it was decided to present the hydrographs obtained by routing 
the calibration rainfall data with the BEMUS model for this particular parameter set (Figure 10). 

 
Figure 10: Observed and simulated flow generated +S*POGA on the calibration data set. a) Hydrographs at the upstream 
gauging station; b) hydrographs at the downstream gauging station. 

Validation 
To assess the quality of the calibration performed by POGA, the parameter sets in ES*POGA were 
simulated in the face of seven rainfall events, whose main features are summarized in Table 6. 

Table 6: Details of the rainfall events used for the validation of the BEMUS model. The number of observations, the 
sampling frequency and the type of event (Single-Burst/Multi-Burst) is reported. 

 Yu02 Yu03 Yu04 Yu05 Yu06 Yu07 Yu08 

No. Observations (#) 51 46 121 221 101 171 101 
Sampling Freq. (#/h) 12 30 30 30 30 30 60 

Event Type MB SB MB MB SB MB SB 
 
The events chosen differ quite substantially and therefore should constitute an objective validation 
test suite. The results of the validation process are presented in Table 7, which summarizes the 

a) b) 
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performances of the parameters sets in ES*POGA measured in terms of the eight objective functions 
previously introduced. 

Table 7: Validation results: statistics on the objective function values of the parameter sets in ES*POGA are given for the 
four events considered. 

  uf1(θ) df1(θ) uf2(θ) df2(θ) uf3(θ) df3(θ) uf4(θ) df4(θ) 

Mean 0.113 0.139 0.003 0.015 0.001 0.010 120 120 
Yu02 

Std 0.011 0.013 0.000 0.002 0.001 0.005 0 0 

Mean 0.145 0.283 0.002 0.010 0.002 0.011 3.637 1.171 
Yu03 

Std 0.019 0.038 0.000 0.001 0.002 0.004 0.790 0.987 

Mean 0.235 0.730 0.001 0.011 0.003 0.007 0 0 
Yu04 

Std 0.015 0.064 0.000 0.001 0.001 0.003 0 0 
Mean 0.356 0.458 0.005 0.020 0.005 0.038 0 0 

Yu05 
Std 0.030 0.068 0.000 0.003 0.001 0.006 0 0 

Mean 0.476 0.503 0.004 0.015 0.004 0.023 0.664 0.808 
Yu06 

Std 0.031 0.062 0.000 0.002 0.001 0.006 0.944 0.983 
Mean 0.618 0.609 0.005 0.020 0.008 0.035 0.308 2 

Yu07 
Std 0.037 0.072 0.000 0.002 0.002 0.006 0.723 0 

Mean 0.569 0.311 0.008 0.026 0.025 0.063 0.603 1.582 
Yu08 

Std 0.072 0.043 0.001 0.003 0.002 0.006 0.568 0.494 
 
Validation results for the event Yu02 show a poor value of the function that measures the time lag 
between recorded and simulated peak flow. Figure 11 shows observed and simulated hydrographs 
generated by the parameter set +S*POGA for this particular validation event. The observed 
hydrographs clearly show two distinct peaks that occurred about 150 minutes apart; although very 
similar, the second records a slightly higher flow. 

 
Figure 11: Observed and simulated flow generated +S*POGA on the validation data set Yu02. a) Hydrographs at the 
upstream gauging station; b) hydrographs at the downstream gauging station. 

a) b) 
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The simulated hydrographs also show these two peaks but their relative importance is reversed 
compared to the measured ones. As a consequence, for this particular rainfall event, the value of the 
objective functions uf4(θ) and df4(θ) do not measure the time elapsed between an observed peak 
flow and the same peak flow simulated. Instead, they measure the time elapsed between two 
different peak flows. 
 
Figure 12 and 13 show the simulated and observed hydrographs for the validation events Yu03 and 
Yu05.  

 
Figure 12: Observed and simulated flow generated +S*POGA on the validation data set Yu03. a) Hydrographs at the 
upstream gauging station; b) hydrographs at the downstream gauging station. 

 
Figure 13: Observed and simulated flow generated +S*POGA on the validation data set Yu05. a) Hydrographs at the 
upstream gauging station; b) hydrographs at the downstream gauging station. 

a) b)

a) b)
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Discussion 
To assess the performance of POGA, the calibration of the BEMUS model was also performed with 
NSGA-II. The encoding, the parameter setting and the number of runs were kept unchanged. 
 
A preliminary analysis of the results showed the same pattern that emerged from the assessment of 
the CS metric presented for the test function DTLZ2. Figure 14 depicts the box plot of the CS 
metric for the last generation population of each of the ten runs performed with the two algorithms. 
As it can be appreciated, 5 to 65% of the parameter sets generated by NSGA-II are dominated by 
those generated by POGA. Conversely, only 0 to 0.5% of the solutions generated by POGA are 
dominated by those generated by NSGA-II. 

 
Figure 14: Box plot of the CS metric for the last generation population of each of the ten runs performed with POGA 
and NSGA-II. 

The results of the calibration performed by NSGA-II are presented for the set S*NSGA-II. This set is 
obtained by first taking the individuals Pareto efficient of each run performed with NSGA-II and 
grouping them into SNSGA-II. Then Pareto efficiency is performed on this set and only the non-
dominated individuals are retained and grouped to form S*NSGA-II. Finally, S*NSGA-II is sieved 
through by POk,z.: this not only permits to gain insights into the quality of these solutions, but it also 
allows to assess the effects of using Preference Ordering as a optimality condition embedded into a 
ranking scheme (POGA) rather than as a post processing routine (NSGA-II + PO). The results are 
then presented in Table 8 for groups of solutions of the same rank and for group of ranks. In details, 
when S*NSGA-II was ranked through PO, seven ranks could be identified. None of the individuals 
falling into the six best-rank groups were Pareto efficient of order 6, i.e. not dominated by any other 
solution ∈ S*NSGA-II for all the 28 combinations of 8 objectives taken 6 at the time. Since 84 
individuals were efficient of order 7, they were further ranked according to their degree of 
efficiency. These resulted in the identification of 6 groups with different degrees of efficiency, 
ranging from 27 for individuals of rank I to 22 for those of rank VI. Therefore, individuals of rank I 
are those that lay on the boundaries of the set of individuals that are efficient of order 7. 
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Table 8: Mean and standard deviation of the objective values of the solutions ∈ S*NSGA-II. The statistics are presented 
for solutions grouped by rank (roman letters); the number of solutions comprised in each group is also given. Order and 
degree of efficiency are shown in the adjacent brackets. For instance, individuals of rank I are efficient of order 6 to the 
degree 27. The last two groups are formed by collecting together individuals from rank I to VI and from Rank I to VII 
respectively. 

Rank No. of points Stat uf1(θ) df1(θ) uf2(θ) df2(θ) uf3(θ) df3(θ) uf4(θ) df4(θ) 

Mean 0.155 0.118 0.004 0.012 0.005 0.025 0.000 0.000 
I (6,27) 3 

Std 0.046 0.037 0.001 0.003 0.003 0.008 0.000 0.000 
Mean 0.158 0.114 0.004 0.012 0.004 0.025 0.000 0.000 

II (6,26) 19 
Std 0.035 0.029 0.001 0.002 0.002 0.009 0.000 0.000 

Mean 0.164 0.111 0.004 0.012 0.003 0.025 0.000 0.000 
III (6,25) 31 

Std 0.033 0.029 0.001 0.002 0.003 0.010 0.000 0.000 
Mean 0.164 0.107 0.004 0.012 0.003 0.027 0.000 0.000 

IV (6,24) 21 
Std 0.023 0.027 0.001 0.002 0.002 0.013 0.000 0.000 

Mean 0.180 0.088 0.004 0.011 0.002 0.032 0.000 0.000 
V (6,23) 4 

Std 0.011 0.008 0.000 0.001 0.001 0.008 0.000 0.000 
Mean 0.158 0.112 0.004 0.013 0.002 0.028 0.000 0.000 

VI (6,22) 6 
Std 0.004 0.011 0.000 0.001 0.001 0.012 0.000 0.000 

Mean 0.184 0.124 0.005 0.015 0.003 0.024 0.050 0.034 
VII (8) 685 

Std 0.042 0.039 0.001 0.004 0.003 0.022 0.217 0.180 

Mean 0.163 0.110 0.004 0.012 0.003 0.026 0.000 0.000 
{I-VI} 84 

Std 0.030 0.027 0.001 0.002 0.002 0.011 0.000 0.000 
Mean 0.182 0.122 0.005 0.014 0.003 0.024 0.044 0.030 

{I-VII} 769 
Std 0.042 0.038 0.001 0.004 0.003 0.021 0.206 0.170 

 
 
It is now interesting to compare the quality of solutions in S*POGA with those in S*NSGA-II, rank by 
rank and order of efficiency by order of efficiency. The results of this analysis are presented in table 
9. It is interesting to see that, none of the 665 solutions of the best three ranks ({I-III}) generated by 
POGA are dominated by any of the 53 solutions of the best three ranks generated by NSGA-II. 
Conversely, up to 20% of those generated by NSGA-II are dominated by those found by POGA. If 
we compare the two sets S*POGA and S*NSGA-II by grouping solutions according to their order of 
efficiency, the gap between the performances of the two algorithms widens further. In fact, despite a 
maximum 0.15% of solutions found by POGA being dominated by those found by NSGA-II, up to 
54% of solutions generated by NSGA-II are dominated. This result suggests that NSGA-II could 
only find a small number of relatively good solutions as opposed to POGA; in fact, the comparison 
between groups of the same order of efficiency entails many more NSGA-II solutions than that 
performed between groups of the same rank. 

Table 9: CS values for the subsets obtained from S*NSGA-II and S*POGA by grouping together individuals with the same 
rank or order of efficiency. 

 Rank1 Rank2 Rank3 Order 6 Order 7 Order 8 Order{6,7,8}

CS(NSGA-II , POGA) 0 0 0 - 0 0.0027 0.0015 
CS(POGA , NSGA-II) 0 0.1875 0.0645 - 0.3086 0.4571 0.5402 
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The analysis presented so far suggests that the set of best solutions found by POGA is overall 
qualitatively superior to those found by NSGA-II. Even though this represents a quite remarkable 
result, from an engineering point of view it is somewhat more interesting to focus on the 
comparison between the smallest subset of best solutions identified by the two algorithms; in fact, 
only a very limited number of parameter sets is amenable to further assessment by a modeler. 
According to Table 4, this subset for POGA consists only of the solution +S*POGA. Similarly, 
according to Table 8, the subset for NSGA-II consists of the three solutions that have the best rank; 
we denote these solutions 1S*NSGA-II, 2S*NSGA-II and 3S*NSGA-II. Table 10 shows their parameter 
values. As it can be seen, +S*POGA differs from the other solutions mainly for parameters P7, P8 and 
P9. It is also interesting to observe that the 1S*NSGA-II value of P5 is significantly higher than that of 
the other best parameter sets. 

Table 10: Parameter values of the highest rank-solutions found by POGA and NSGA-II. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
+S*POGA 2.5668 0.4 0.00875 0.33235 0.33205 0.43575 0.05 0.98436 0.47703 0.02 

1S*NSGA-II 3.8523 0.4 0.00884 0.35392 2.3775 0.21904 0.04555 0.49658 0.83284 0.02 
2S*NSGA-II 3.328 0.40059 0.00296 0.44706 0.36649 0.47411 0.04428 0.68524 0.65298 0.02 
3S*NSGA-II 3.7148 0.40059 0.00873 0.36373 0.33023 0.27849 0.04238 0.85533 0.56305 0.02 

 
A visual comparison of the hydrographs generated by the parameter sets 1S*NSGA-II, 2S*NSGA-II, 
3S*NSGA-II and +S*POGA is presented in Figures 15, 16, 17, and 18 for the calibration event Yu01 and 
the three validation events Yu02, Yu03 and Yu05 respectively. It was purposely decided not to 
include the hydrographs generated by the parameter set 3S*NSGA-II because they were 
undistinguishable from those generated by 2S*NSGA-II for every rainfall event considered. Objective 
function values were consequently almost identical. 

 
Figure 15: Observed and simulated flow generated by 1S*NSGA-II, 2S*NSGA-II and +S*POGA on the calibration data set 
Yu01. a) Hydrographs at the upstream gauging station; b) hydrographs at the downstream gauging station. 

a) b)
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Figure 16: Observed and simulated flow generated by 1S*NSGA-II, 2S*NSGA-II and +S*POGA on the validation data set Yu02. 
a) Hydrographs at the upstream gauging station; b) hydrographs at the downstream gauging station. 

 
Figure 17: Observed and simulated flow generated by 1S*NSGA-II, 2S*NSGA-II and +S*POGA on the validation data set Yu03. 
a) Hydrographs at the upstream gauging station; b) hydrographs at the downstream gauging station. 

a) b)

a) b)
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Figure 18: Observed and simulated flow generated by 1S*NSGA-II, 2S*NSGA-II and +S*POGA on the validation data set Yu05. 
a) Hydrographs at the upstream gauging station; b) hydrographs at the downstream gauging station. 

Albeit debatable, one might argue that from visual comparison, little can be stated about the quality 
of the hydrographs generated by POGA and NSGA-II-best solutions for the rainfall events Yu01 
Yu03 and Yu05. On the contrary, observing Figure 18 one can safely reason that +S*POGA produces 
hydrographs, both at the upstream and downstream gauging stations, that strike a better agreement 
with the observations than the hydrographs generated by NSGA-II best solutions. 
 
To gain further insights into the quality of the 3 solutions 1S*NSGA-II, 2S*NSGA-II and +S*POGA, it was 
decided to compare their performances over the one calibration and seven validation events 
introduced previously. To this end, the objective function values generated by these solutions were 
grouped, event by event, and ranked according through POk,z. Table 11 summarizes the results of 
this analysis. As it can be appreciated, +S*POGA is the best solution for 4 out of a total of 8 events 
(Yu02, Yu04, Yu05 and Yu06). For another 2 events +S*POGA shares the best rank with 1S*NSGA-II 
(Yu01) and 2S*NSGA-II (Yu07); on the remainder 2 calibration events (Yu03 and Yu08), +S*POGA is the 
second-best parameter set. It is worth emphasizing that one of the best solutions generated by 
NSGA-II, namely 2S*NSGA-II, is not Pareto efficient when simulated in the face of validation events 
Yu07 and Yu08. 
 
These results support us interpreting the glimpses that emerged from the visual comparison. On the 
calibration event, +S*POGA performs equally to 1S*NSGA-II in terms of the 8 objective functions 
considered. The other solution generated by NSGA-II shows a somewhat poorer calibration. On 
Yu02 and Yu03 (i.e. the first and second validation events considered), +S*POGA is the best and the 
second-best solution respectively. On the last validation event considered for visual comparison, 
Yu05, the situation appears somewhat different: not only +S*POGA is the best solution, but is efficient 
of order 4 while the others are only Pareto efficient. This implies that +S*POGA is the best solution 
for every combination of the 8 objective functions, taken 4 at the time. Among these combinations, 
there are { uf1(θ), uf2(θ), uf3(θ),uf4(θ)} and { df1(θ), df2(θ), df3(θ), df4(θ)}: the former entails only the 
objective functions that relate to the upstream gauging station, while the latter only those that relate 
to the downstream one. As a consequence, from a visual comparison, both hydrographs generated 
by +S*POGA appear significantly better than those generated by 1S*NSGA-II (Yu01) and 2S*NSGA-II. 

a) b)
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Table 11: Objective function values and ranks of the solutions 1S*NSGA-II, 2S*NSGA-II and +S*POGA. Orders and degrees of 
efficiency are shown in the adjacent brackets. 

Event  uf1(θ) df1(θ) uf2(θ) df2(θ) uf3(θ) df3(θ) uf4(θ) df4(θ) Rank 
+S*POGA 0.1271 0.1524 0.0030 0.0153 0.0053 0.0000 0 0 I (5,55) 

1S*NSGA-II 0.2081 0.0751 0.0051 0.0087 0.0014 0.0212 0 0 I (5,55) Yu01 
2S*NSGA-II 0.1279 0.1391 0.0031 0.0142 0.0059 0.0344 0 0 II (7) 
+S*POGA 0.1289 0.1329 0.0038 0.0139 0.0004 0.0055 24 24 I (5) 

1S*NSGA-II 0.0973 0.1690 0.0029 0.0177 0.0015 0.0145 24 24 II (7) Yu02 
2S*NSGA-II 0.1293 0.1335 0.0037 0.0143 0.0004 0.0105 24 24 III (8) 
+S*POGA 0.1517 0.1988 0.0027 0.0073 0.0047 0.0096 2 1 II (6) 

1S*NSGA-II 0.1761 0.3376 0.0032 0.0116 0.0008 0.0052 2 1 III (7) Yu03 
2S*NSGA-II 0.1394 0.2611 0.0024 0.0102 0.0043 0.0193 2 0 I (5) 
+S*POGA 0.2399 0.6002 0.0015 0.0092 0.0041 0.0030 0 0 I (5) 

1S*NSGA-II 0.2565 0.8259 0.0015 0.0122 0.0024 0.0063 0 0 III (8) Yu04 
2S*NSGA-II 0.2347 0.6865 0.0014 0.0109 0.0042 0.0114 0 0 II (7) 
+S*POGA 0.3228 0.3217 0.0042 0.0145 0.0059 0.0229 0 0 I (4) 

1S*NSGA-II 0.3940 0.5598 0.0052 0.0248 0.0048 0.0422 0 0 II (8) Yu05 
2S*NSGA-II 0.3226 0.4103 0.0043 0.0187 0.0062 0.0405 0 0 II (8) 
+S*POGA 0.4571 0.3789 0.0037 0.0114 0.0039 0.0106 1 1 I (5) 

1S*NSGA-II 0.5054 0.5949 0.0040 0.0171 0.0043 0.0266 0 0 II (7) Yu06 
2S*NSGA-II 0.4470 0.4596 0.0037 0.0141 0.0041 0.0258 1 1 II (7) 
+S*POGA 0.5798 0.4629 0.0052 0.0153 0.0090 0.0240 0 1 I (5,55) 

1S*NSGA-II 0.6682 0.7172 0.0058 0.0225 0.0099 0.0410 1 1 DominatedYu07 
2S*NSGA-II 0.5746 0.5582 0.0051 0.0188 0.0082 0.0394 0 1 I (5,55) 
+S*POGA 0.4596 0.2543 0.0067 0.0216 0.0199 0.0702 0 1 II (7) 

1S*NSGA-II 0.6830 0.3800 0.0105 0.0303 0.0260 0.0682 2 2 DominatedYu08 
2S*NSGA-II 0.4578 0.2519 0.0068 0.0206 0.0217 0.0488 0 1 I (5) 

 
On the premise of this analysis, it was concluded that POGA not only calibrated successfully the 
model BEMUS, but also performed overall better than NSGA-II.  

CONCLUSIONS 
In this paper the Preference Ordering Genetic Algorithm (POGA), a new MOGA was presented. It 
was claimed that its ranking scheme would make it suitable to successfully tackle MOP with a 
massive number of objective functions and we demonstrated it by comparing the scalability features 
of POGA with a widely accepted algorithm, NSGA-II, on a test function common in the literature. 
POGA was hen applied to the automatic calibration of a sewer drainage network model, BEMUS, 
for the experimental urban catchment Miljakovac (in Belgrade, Serbia). The statistics presented 
suggest that POGA was able to successfully calibrate the model BEMUS. A comparison with the 
calibration performed by NSGA-II highlighted that not only was POGA able to find overall better 
solutions but it also identified a set of best-compromise parameter values that was further analysed 
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because it represents a logical choice from an engineering point of view. This parameter set proved 
to be qualitatively superior to the best parameter sets identified by NSGA-II. 

FUTURE WORK 
A comprehensive investigation on the complexity of the algorithm has not been provided yet. 
Although empirical results suggest that the ranking procedure should scale less the than 
exponentially, a detailed analysis is required and it is currently being undertaken by the authors. 
 
The present work claims and proves that the Preference Ordering condition of efficiency of order, 
denoted throughout as POk, is a promising ranking procedure to be embodied in MOGAs to enhance 
the exploration of the decision variables space. Further research is necessitated to investigate the 
effects of extending this methodology to the Preference Ordering condition of efficiency of order 
and degree (POk,z). 
 
Even though POGA draws heavily from NSGA-II, the latter is mainly chosen as a proof of concept 
to show the potential of Preference Ordering as a ranking procedure embedded in MOGAs.  
Therefore, it is the author’s firm belief that other algorithms might benefit from the concept 
presented in the paper. 

REFERENCES 
 [1]  Branke, J. and Deb, K., (2004). "Integrating User Preferences into Evolutionary Multi-

Objective Optimization", Technical Report, Kanpur Genetic Algorithm Laboratory 
(KanGAL), 2004004. 

 [2]  Branke, J., Kaubler, T., and Schmeck, H., (2001). "Guidance in Evolutionary Multi-
Objective Optimization", Advances in Engineering Software, vol. 32:499-507. 

 [3]  Coello Coello, C. A., (2000). "Handling Preferences in Evolutionary Multiobjective 
Optimization: A Survey", in 2000 Congress on Evolutionary Computation, vol. 1 pp. 30-37, 
Piscataway, New Jersey: IEEE Service Center. 

 [4]  Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B., (2002). Evolutionary 
Algorithms for Solving Multi-Objective Problems. New York: Kluwer Academic. 

 [5]  Corne, D. W., Knowles, J. D., and Oates, M. J., (2000). "The Pareto Envelope-based 
Selection Algorithm for Multiobjective Optimization", in Proceedings of the Parallel 
Problem Solving from Nature {VI} Conference,pp. 839-848, M. Schoenauer and K. Deb 
and G. Rudolph and X. YAO and E. Lutton and J. J. Merelo and H. P. Schwefel Eds. 
Springer. Lecture Notes in Computer Science No. 1917. 

 [6]  Cvetkovi´c, D. and Parmee, I. C., (2002). "Preferences and their Application in Evolutionary 
Multiobjective Optimisation", IEEE Transaction on Evolutionary Computation, vol. 
6(1):42-57. 

 [7]  Das, I. and Dennis, J. E., (1998). "Normal Boundary Intersection A New Method for 
generating the Pareto Surface in nonlinear multi objective optimization problems", SIAM J. 
on Optimization, vol. 8(3):631-657. 

 [8]  Deb, K., (1999). "Multi-Objective Evolutionary Algorithms: Introducing Bias Among 
Pareto-Optimal Solutions", Technical Report, Kanpur Genetic Algorithms Laboratory 
(KanGAL), 99002. 

 [9]  Deb, K., (2001). Multi-Objective Optimization using Evolutionary Algorithms John Wiley & 
Sons, Chichester, UK. 

 [10]  Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., (2000). "A Fast Elitist Non-Dominated 
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II", Technical Report, 
Kanpur Genetic Algorithm Laboratory (KanGAL), 200001. 



 29

 [11]  Deb, K., Thiele, L., and Zitzler, E., (2002). "Scalable Multi-Objective Optimization Test 
Problems", in IEEE Congress on Evolutionary Computation, (CEC 2002), Piscataway (NJ): 
IEEE press. 

 [12]  Djordjevic, S., (2001). "A mathematical model of the interaction between surface  and 
buried pipe flow  in urban runoff and drainage." Ph.D. Faculty of Civil Engineering, 
University of Belgrade, Belgrade. 

 [13]  Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimization and Machine 
Learning. Reading, Mass: Addison-Wesley. 

 [14]  Holland, J. H., (1975). Adaptation in Natural and Artificial Systems Ann Arbor, MI: The 
University of Michigan Press. 

 [15]  Horn, J., Nafpliotis, N., and Goldberg, D. E., (1994). "A Niched Pareto Genetic Algorithm 
for Multiobjective Optimization", in Proceedings of the First {IEEE} Conference on 
Evolutionary Computation, {IEEE} World Congress on Computational Intelligence, vol. 1 
pp. 82-87, Piscataway, New Jersey: IEEE Service Center. 

 [16]  Knowles, J. and Corne, D., (1999). "The Pareto Archived Evolution Strategy: A New 
Baseline Algorithm for Pareto Multiobjective Optimisation", in Proceedings of the 1999 
Congress on Evolutionary Computation (CEC'99), vol. 1 pp. 98-105, P. J. Angeline and Z. 
Michalewicz and M. Schoenauer and X. Yao and A. Zalzala Eds. IEEE Press. 

 [17]  Madsen, H. and Khu, S. T., (2002). "Parameter estimation in hydrological modelling using 
multi-objective optimization", in Proceedings of the Fifth International Conference on 
Hydroinformatics, Software Tools and Management Systems, vol. 2 pp. 1160-1165, I. D. 
Cluckie and D. Han and J. P. Davis and S. Heslop Eds. 

 [18]  Ponce, V. M. and Yevjevich, V., (1978). "Muskingum-Cunge Method with Variable 
Parameters", Journal of the Hydraulics Division, vol. 104(HY12):1663-1667. 

 [19]  Radojkoviæ, M. and Maksimoviæ, C., (1984). "Development, testing and application of 
Belgrade urban drainage model", in 3rd ICUD, Goteborg, vol. 4  

 [20]  Srinivas, N. and Deb, K., (1995). "Multiobjective Optimization Using Nondominated 
Sorting in Genetic Algorithms", Evolutionary Computation, vol. 2(3):221-248. 

 [21]  Van Veldhuizen, D. A. and Lamont, G. B., (2000). "Multiobjective Evolutionary 
Algorithms: Analyzing the State-of-the-Art", Evolutionary Computation, vol. 8(2):125-147. 

 [22]  Zitzler, E., Laumanns, M., and Thiele, L., (2001). "SPEA2: Improving the Strength Pareto 
Evolutionary Algorithm", Swiss Federal Institute of Technology (ETH) Zurich, TIK, 103. 

 [23]  Zitzler, E. and Thiele, L., (1999). "Multiobjective Evolutionary Algorithms: A Comparative 
Case study and the Strength Pareto Approach", IEEE Transaction on Evolutionary 
Computation, vol. 3(4):257-271. 

 [24]  Zitzler, E., Thiele, L., and Deb, K., (2000). "Comparison of Multiobjective Evolutionary 
Algorithms: Empirical Results", Evolutionary Computation, vol. 8(2):173-195. 

 
 


