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SPECIFIC INTERACTION BETWEEN DATA AND MODELS
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Al: Pattern Recognition
* Learning patterns from historical input/output
data
* Urban Flood Modelling
— Input: RT Radar data
— Output 1: Model results
— Output 2: Measurements
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Literature Review — Hydrology & ANNs

— Auckland Sewer Overflow Model — Single CSO
e (Fernando, Zhang, Kinley, 2005)

— Data-Driven Modelling — Fluvial flow and flooding
* (Solomatine, 2007)
— Data-Driven Modelling - Optimisation using Genetic
Algorithms
* (Solomatine, 2008)
— ANN - Flood Forecasting in River Arno, Florence,

Italy
e (Campolo, 2003)
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RAPI DS: RAdar Pluvial flooding Identification for Drainage System

* Two ANNSs:
— Input 1: RT Radar data — Input 2: Rainfall prediction
— Output 1: Rainfall — Output 2: Flood severity
prediction prediction
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RAPIDS: Case Study 1
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Objectives

* Toreplace SIPSON with a faster, Al-based DDM

* To provide classification of flood status/severity
at each manhole in a given network

— Optionally - full flood-level regression
(metres)

e Speed is traded off with accuracy
* Ability to predict potential flooding severity
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Methodology

* Designed rainfall (durations & return periods)
e SIPSON simulator
— simulated flood levels for 123 street manholes
* ANN used = Multi-Layer Perceptron (MLP)
— Input:
* rainfall intensity, cumulative rainfall, elapsed time
— Output: flooding level at each manhole
— Different storms used for cross-validation and testing
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Methodology (continued)

e Classification Min Max

Scheme: Flood Flood Depth | Flood Depth
. Description (metres) (metres)

2 | Moderate 1.00 5.00

1 Slight 0.00 1.00

* Vary ANN setup parameters

— Input (number of 3-minute time steps)
— Output — prediction up to 90 minutes
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Methodology: Input and Output

* ANN Inputs  ANN Output Targets from
SIPSON...

Elapsed Time (seconds)

Rainfall Intensity (mm/hr)

Cumulative Rainfall (mm)
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RAPIDS - ANN Model Training
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Results = Training: Regression & Classification
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Results = Test: Regression & Classification
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Results = Test: Flood Level %Error

% Error

% Flood Level Error vs Forecasting Advance and Manhole Network Position
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Results = Test: Classification %Error

% Classification Error vs Forecasting Advance and Manhole Network Position
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Results = Typical Confusion Matrix

e 30-minute prediction; 12-minute input window
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Conclusions

* Novel features of RAPIDS Case Study 1

— Multiple locations modelled simultaneously
* For urban rather than fluvial flooding
— 3 minute sampling rate faster than other reported studies

* Regression with wrapper = Classification method
successful

* Limit of prediction = concentration time of network

* ANNs can model this 123 manhole network with in
excess of 12-times improvement in computational time
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Possible future research

 Test with 5-minute / 1-hour BADC rainfall data
* Use of rain radar to improve prediction

* Provide extra sewer flow data signals — more
accurate?

* Experiment =2 modify ANNs

* Try modelling each manhole with a separate
ANN
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Possible Benefits to Water Industry

* Faster modelling than conventional simulators

— Real time
* Forecasting prediction capability possible
* Flexible classification of flood severity
* Could potentially generate automated alerts
* Automated classification of flooding ‘hotspots’

— based on frequency of surcharge events at manholes
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Thank You

Questions?
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