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Summary 

The evaluation report on methods for quantifying and reducing uncertainty 
in Urban Water Systems (UWS) modelling fulfils the requirements of 
Deliverable 3.6.1 within work package 3.6 of the PREPARED Enabling change 
project (EC Seventh Framework Programme Theme 6). This report has 
evaluated existing methods applied in a number of related fields for 
quantifying and reducing uncertainty in models that may be applied in 
Urban Water Systems. Numerical models may be applied to address one of 
the key aims of the PREPARED project, and aid in optimising the use of 
existing water supply and sanitation systems. However, such modelling 
approaches must consider inherent system uncertainty, which is reviewed in 
Section 2 of this report; uncertainty of both aleatory and epistemic nature 
affects UWS modelling in both Water Distribution Networks and Urban 
Waste Water Systems. 
 
A range of techniques for quantifying and reducing uncertainty have been 
developed in systems models applied in a range of disciplines; the most 
widely applied and developed approaches have focussed on methods for 
quantifying and reducing parameter uncertainty, including parameter 
optimisation procedures, formal and informal (e.g. Generalised Likelihood 
Uncertainty Estimation (GLUE)) probabilistic approaches, and within these 
frameworks, techniques for efficiently quantifying/reducing parameter 
uncertainty (e.g. Genetic Algorithms (GA), Markov Chain Monte Carlo 
(MCMC)).  These methods may be best applied where data availability for 
model calibration and evaluation are good. Recent advances, including Total 
Error Analysis and implicit uncertainty methods, have helped to move 
beyond a focus on model parameter uncertainty within probabilistic 
approaches towards also accounting for input uncertainty, model structural 
uncertainty, and output (evaluation) data uncertainty. Such recent advances, 
however, require more data to constrain and understand the effect of 
different sources of uncertainty on model performance.  
 
Where data availability is poorer, restricted to expert opinion, and where 
there is uncertainty regarding the possibility of future events, Possibility 
theory and Evidence theory may form more appropriate frameworks for 
representing uncertainty and informing decision making. Evidence theory 
forms a more appropriate framework for combining different sources and 
types of information to reduce system uncertainty. 
 
Model development may, and should be considered as an iterative process 
alongside data collection. As such, sensitivity analysis methods outlined in 
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Section 3 of this report may be applied to reduce model uncertainty and 
monitoring costs by informing where network monitoring should take place. 
Therefore some of the methods outlines in Section 3 may be suitable to 
address the aims of PREPARED work package 3.5. 
 
A range of real-time approaches have been briefly introduced in Section 4, 
which are considered most applicable for addressing Task 3.6.3, and may also 
be applied successfully when coupled with the methods reviews in Section 3 
for joint state and parameter estimation. The application of real-time 
approaches is constrained by the availability of real-time data for application, 
and the time available to make computations to provide useful system 
forecasts. These issues will be reviewed more fully in Deliverable 3.6.2. 
 
Although the methods presented here, as well as the techniques and 
methodologies that will be implemented in Task 3.6.2 can be considered as 
generic, the final selection of the methodologies to be applied depends also on 
the specific requirements of the PREPARED cities selected for demonstration, 
and data availability therein. 
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1 Introduction 

This report fulfils the requirements of Deliverable 3.6.1 within work package 
3.6 of the PREPARED Enabling change project (EC Seventh Framework 
Programme Theme 6). The report evaluates existing methods applied to 
quantify and reduce uncertainty in models applied to UWS, and in other 
related fields. Further, the report reviews the potential application of novel, 
and yet untested methods for uncertainty quantification and reduction within 
in the context of UWS modelling.  

1.1 Introduction to PREPARED 
 

Projected climatic change over the 21st century is predicted to manifest itself 
regionally through changes in water availability; Northern Europe and 
Southern Europe are projected to experience, respectively, an increase and 
decrease in mean precipitation, as well as an increase in the magnitude and 
frequency of extreme events (e.g. extreme precipitation events for Northern 
Europe and drought conditions in Central and Southern Europe; Christensen 
et al. 2007). Through impacts on the availability and quality of water in the 
water cycle (Figure 1), such changes will have direct consequences for what 
the World Health Organisation (WHO) considers the foundation of public 
health and development: the provision of drinking water and sanitation 
(WHO 2009). In Urban Environments drinking water is provided by the 
Water Distribution Network (WDN) to consumers and industry, and 
sanitation chiefly provided for by the sewer network (Figure 1.). Adaptive 
strategies are required to reduce the vulnerability of UWS to climatic 
variability and change. 
 
The aim of PREPARED is to show that the water supply and sanitation 
systems of cities and their catchments can adapt and be resilient to the 
challenges of climate change. In order to respond to the risks posed by 
climatic change, the impacts of which are currently surrounded by 
uncertainty, adaptive strategies are required that move beyond the current 
approach of building larger infrastructure that cannot be relied upon to 
deliver acceptable risk. Strategies are required to better manage potential risk. 
Strategies that can be optimised as new information becomes available to 
avoid two potential scenarios: First, the potential for under-investment as 
climate change impacts are under-estimated; Second, the potential for over-
investment, and an unnecessary use of resources. 
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PREPARED, which has taken an industry/end-user driven approach will 
seek to build the resilience of UWS, initially in a number of demonstration 
cities, in two primary ways (3):  
 

 First, through optimisation of existing water supply and sanitation 
systems, to postpone investments in new infrastructure until 
investment risks are lower as more knowledge is available. 

 Second, in the case where optimisation is not sufficient, PREPARED 
will provide guidance and produce frameworks to aid utilities in 
building more resilient water supply and sanitation systems. 
 

 

 
 
Figure 1. Position of the Urban Water System (Grey Shaded Region) within 
the water Cycle. 
 
 
Developing approaches for optimal management of UWS requires a detailed 
understanding of how such systems operate. Conventional management 
approaches have typically focussed on solving isolated technical problems, in 
what has been termed a “command and control” approach (Pahl-Wostl et al. 
2007). Dealing with problems in such a way neglects system complexity and 
the potential for complex system feedbacks that may result in unexpected 
consequences (Pahl-Wostl 2007). Such management therefore represents poor 
management of risk and resources. Although subjectively defined, risk may 
be generally considered as the consequence combined with the probability of 
occurrence of a particular event. The identification and potential reduction of 
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risk associated with Urban Water System management (PREPARED work 
package 2.3) requires a deeper, holistic understanding of inherent system 
complexity and uncertainty to better inform an understanding of the 
probability of event occurrence. 
 
An essential and innovative aspect of PREPARED is the development of a 
toolbox for real time monitoring and modelling (Work area 3.6). The toolbox 
is required to increase the technological capacity of existing water supply and 
sanitation systems to deal with changes in the quality and quantity of system 
input resulting from climatic change, alongside potential changes in demand. 
Such demands call for an integrated real time control strategy, supported by 
monitoring and modelling approaches (e.g. Lynggaard-Jensen and Lading 
2006; Nielsen et al. 2002; Rauch et al. 2002; Rauch and Harremoes 1999), to 
provide decision support in the face of inherent system uncertainty. Towards 
this end, Work package 3.6 will investigate existing methodologies for 
uncertainty quantification in UWS modelling, and identify possible steps to 
reduce model uncertainty through real-time modelling, calibration and data 
assimilation.  
 
Studies will be conducted with partner cities/utilities to assess the 
effectiveness of classical uncertainty propagation methods, e.g., Monte Carlo 
approach, and some advanced methodologies, such as Markov Chain Monte 
Carlo methods (e.g., Metropolis-Hastings or the Shuffled Complex Evolution 
Metropolis algorithm) or the General Likelihood Uncertainty Estimation 
(GLUE) method. Some promising, but yet untested methods in the context of 
UWS, such as the Total Error Framework that accounts for and propagates all 
sources of uncertainties at the same time, will be considered for particular 
application in UWS. Very recently (2009), an international joint study has 
attempted to establish a consensus on evaluation of modelling uncertainties 
for urban sewer systems. Similar attempts have been made by a number of 
groups assessing other components of UWS (e.g. wastewater treatment 
plants). As some of the involved researchers are also partners of PREPARED 
(INSA, UNEXE, Monash, UNINNS, etc) PREPARED will benefit from these 
recent coordinated efforts and will be a significant contributor to the further 
development of this work and of its dissemination for the entire UWS. 
 

1.2 Report Structure 
 
The report is structured as follows: 
 
Section 2 defines types of uncertainty that affect modelling from a systems 
perspective. In order to understand the potential application of different 
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methods for quantifying and reducing uncertainty in UWS, Section 2 first 
reviews the types of uncertainty affecting our understanding, and therefore 
ability to model UWS. 
 
Section 3 reviews different methods that have been applied within the context 
of UWS modelling, and in relate scientific fields, for model calibration 
(reduction of parameter uncertainty) and more recently developed methods 
for quantifying different types of uncertainty, including structural uncertainty 
and data uncertainty. Section 3 will also introduce methods applied for 
sensitivity analysis (3.7), different mathematical representations of 
uncertainty, including possibility theory (3.9) and evidence theory (3.10), and 
parameter sampling procedures (3.11).  The methods considered in Section 3 
are primarily developed to reduce uncertainty prior to model application. 
 
Section 4 briefly considers various methods developed and applied 
specifically to deal with quantifying and reducing uncertainty in (near) real-
time. The methods considered in Section 4 are those considered most 
applicable for addressing Task 3.6.3 (A scientific report on data assimilation 
techniques for improving the accuracy of model predictions), and shall be 
reviewed more fully in Deliverable 3.6.2 due in month 18. 
 
Section 5 Provides a summary of the conclusions of the report. 
 
Section 6 References. 
 
Appendix A, provides a tabular classification of the uncertainty 
methodologies reviewed in Section 3. 
 
Appendix B, Provides a Glossary of relevant terms to aid in interpretation of 
the themes covered in this document. 
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2  Uncertainty In Urban Water Systems 
(UWS) 

2.1 Introduction 
 
To facilitate the development of an understanding regarding the applicability 
of different methods for quantifying and reducing uncertainty in UWS, 
Section 2 will first define uncertainty, and review existing uncertainties 
affecting our ability to simulate both Water Distribution Networks (WDN; 
2.4) and Urban Waste Water Systems (UWWS; 2.5). 

2.2 Defining Uncertainty 
 
Uncertainty may be broadly defined as a state where we do not have exact 
knowledge to describe the components of a given system. Uncertainty is 
usually divided into two categories: aleatory uncertainty, and epistemic 
uncertainty (Hall 2003; Helton and Burmaster 1996): 
 

 Aleatory uncertainty, also referred to as ‘Variability’ (Anderson and 
Hattis 1999; Nauta 2000) or ‘inherent’ uncertainty (Hall 2003), refers to 
variability in known populations, where observations/measurements 
conform to a probability distribution. Such uncertainties include the 
spatial and temporal variability in rainfall. Hall (2003) prefers an 
operational definition of aleatory uncertainty that is a specific feature 
of measurements (phenomenal knowledge) to avoid insubstantial 
assertions about reality (Noumenal). It is widely held that such 
uncertainty is irreducible due to its inherent nature. 

 Epistemic uncertainty results from incomplete knowledge of the 
system in question, and an inability to understand and describe that 
system. Numerical models that seek to represent reality are a form of 
epistemic uncertainty; given the inherent simplification moving from 
the ‘real world’ to numeric representation, models can never be 
confirmed as ‘true’ (Popper 1969). However, unlike aleatory 
uncertainty, epistemic uncertainty can be reduced through greater 
understanding of the system. 
 

An explicit incorporation of either type of uncertainty in many areas of 
scientific research (and modelling) is often lacking (Pappenberger et al. 2006). 
Whilst the lack of uncertainty treatment in scientific analysis at best 
represents bad practise, in the case of risk management, decisions made based 
on deterministic predictions may lead to misplaced confidence and severe 
consequences (Nauta 2000). Over the last decade, contemporaneous with 
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advances in data collection and computer power, the application of 
uncertainty analysis in the fields of hydroinformatics has grown (Hall 2003). 
In order to address uncertainty when modelling UWS, three areas need to be 
considered: understanding, quantification, and reduction of uncertainty (Liu 
and Gupta 2007). Prior to an evaluation of existing methods for quantifying 
and reducing uncertainty in UWS modelling (Section 3 and Section 4), it is 
first necessary to consider types of uncertainty in the context of systems 
modelling (Section 2.3), and the nature and sources of uncertainty in UWS 
(Section 2.4 and Section 2.5). 

2.3 Types of Uncertainty 
 
Modelling natural/real-world systems will be considered from a systems 
theory perspective, which will provide a general framework (and notation) 
for evaluating different types of uncertainty quantification and reduction that 
have been applied in the context of both UWS, and more broadly to 
environmental modelling (Section 3). A model may be considered as 
composed of six different components (Figure 2): 
 

 
Figure 2. A schematic systems representation of model components  
(modified from Liu and Gupta 2007). 
 
where B is the system boundary; U=(u1,...,un) and Y=(y1,...,yn) represent model 
inputs and outputs, with length n, as fluxes of mass or energy into and out of 
the system; x0 represents the model initial conditions; θ=(θ1,...,θm)  are model 
parameters (e.g. pipe roughness) with length m, which are typically 
considered time invariant during simulations, but in real-time applications 
that seek to reduce uncertainty, they may be time varying (Moradkhani et al. 
2005b); X=(x1,...,xn)  represents model system states (e.g. pressure or head in a 
WDN model), which are stored in the system boundary, and alongside Y, 
evolve over time when the model system equations (f) are conditioned on 
model parameters and inputs: 
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Y, X = ݂(U,ݔ଴,ܤ,ߠ)                                                                                                             (2.1) 
                                                                                               
 
 The model equations (f) may be considered as a formalised mathematical 
representation of reality, which will contain epistemic uncertainty. As such 
these equations seek to make the correct mapping from system inputs to 
states and system outputs. In general, there are three different types of model 
uncertainty, which incorporate the model system components described 
above: Structural uncertainty, Parameter uncertainty and Data uncertainty. 
 
Structural uncertainty refers to errors in the mathematical representation of 
reality that result from system conceptualisation (abstraction), numerical 
representation, and discretisation of a model in space and time. The system 
boundary (B), and model equations (f) are both part of the model structure. 
Structural uncertainty is a form of epistemic uncertainty, which can be 
reduced as more information becomes available to constrain understanding 
of a system, and enhance model representation. However, as models can 
never be confirmed as ‘true’, structural uncertainty will never be eliminated. 
Structural uncertainty (error) is widely known as systems are often simplified 
for reasons other than epistemic uncertainty (e.g. computational and data 
constraints lead to simpler system representation). Such errors, whilst known 
to exist, are often not accounted for fully/explicitly as they are difficult to 
quantify (see Section 3 and Section 4). 
 
Parameter uncertainty reflects uncertainty in the value of variables used in 
equations to represent model system components (e.g. pipe roughness). 
Parameter uncertainty may be a form of both aleatory uncertainty and 
epistemic uncertainty. Nodal demands in WDN are a form of aleatory 
uncertainty as demand varies temporally throughout the day. Epistemic 
uncertainty in model parameter values often results from the discretisation of 
model equations in time and space, resulting in an inability to reconcile the 
scale of observations with model parameters. Many model parameters (e.g.  
roughness) are often ‘effective’ (Lane 2005), as they cannot be observed 
directly in nature, and are estimated indirectly via calibration (Kapelan et al. 
2007). Parameter uncertainty can result in large errors in model predictions, 
and of all forms of uncertainty, has received widest attention in the research 
literature. 
 
Measurement/Data uncertainty refers to uncertainty in the quantities used to 
define initial conditions (x0), model inputs (U) and observations used to 
evaluate model predictions (either system states (X) or outputs (Y)). Such 
uncertainty can result from either instrumentation error that fails to 
accurately and precisely record the quantity of interest (Bargiela and 
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Hainsworth 1989), or result from the spatial and/or temporal miss-match 
between the scale/resolution of observation, and that required/predicted by 
the model. Measurement uncertainty can be both aleatory and epistemic in 
nature. 
 
In modelling UWS structural, parameter and measurement uncertainty 
results in unknowns that will lead to uncertain model predictions. To 
understand, and maximally reduce the final total uncertainty in model 
predictions, all of these aspects of uncertainty need to quantified, propagated 
through the system, and where possible, reduced. A first step towards 
quantification is to first understand sources of uncertainty in UWS, and 
uncertainties in the models typically used to represent them. 
 

2.4 Sources of Uncertainty in Water Distribution Network modelling 
 
The primary objective of the Water Distribution Network is to provide 
drinking water at sufficient pressure and volume for end users (domestic and 
industrial). To meet this demand a WDN typically consists of a number of 
links (pipes, pumps and valves) that are joined at junction nodes, and control 
distribution of drinking water, via storage tanks, from a water production to 
the consumer and industry (Figure 1). Under normal design (steady state 
conditions), the network must be capable of supplying anticipated demands 
with adequate pressures. Networks are typically designed as looped 
structures (Figure 3) to overcome problems of water stagnation, customer 
isolation during cut-off, demand flexibility, and because looped systems are 
less sensitive to uncertainty associated with system design (Boulos et al. 
2004).  
 
Network models that seek to represent the WDN consist of a collection of 
pipes, pumps and valves, which are connected together at a series of nodes, 
where consumer demand is specified. The detail with which the original 
WDN is represented in both time and space depends on the purpose to which 
the model is to be used. For a given demand (pattern) the system equations 
conserving mass at junction nodes and energy along pipes may be solved for 
steady state and extended period simulation (EPS; a series of steady state 
periods with additional equations for tank levels). Whilst such solutions may 
be adequate for master planning studies, the transition between hydraulic 
conditions may be important in surge analysis (Jung et al. 2007). In such 
situations the governing equations of mass and momentum need to be solved 
to simulate pressure wave propagation (Boulos et al. 2004). The choice of 
correct model structure will potentially introduce uncertainty into the 
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modelling process, alongside existing aleatory uncertainties associated with, 
for example, demand patterns. 
 
 

 
 
Figure 3. The Anytown network layout as an example of a WDN layout, 
including a source of water to the system, via a pump and two storage tanks 
(Walski et al. 1987). 
 

2.4.1 Skeletonisation 
 
In model construction the process of skeletonisation involves the removal of 
pipes that are not considered essential to the analysis conducted by the 
model, and thereby preserving the performance of the original system. Pipes 
in series with similar characteristics are often merged to reduce segmentation, 
and based on hydraulic equivalence theory parallel pipes are merged to a 
single equivalent pipe with the same hydraulic characteristics. Pipes running 
to dead ends and pipes less than a given diameter may also be trimmed 
(Figure 4). The example skeletonised pipe network shown in Figure 4 follows 
the guidelines set out by the US Environmental Protection Agency (USEPA 
2006) whose guidelines for Skeletonisation include preserving at least 80% of 
the pipe volume in the system, all pipes greater than or equal to 12 inches, 
and pipes greater than 8 inches in demand areas connected to storage 
facilities, pumps and valves. A comparison of the original (Figure 4A) and 
skeletonised network (Figure 4B) for steady-state conditions show hydraulic 
equivalency, however following a pump trip at 5 seconds, the skeletonised 
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model fails to correctly reproduce the maximum surge head in the original 
network (Figure 5). The skeletonised network neglects the importance of dead 
ends and the importance of high elevation nodes in the network which, 
respectively, may affect pressure surges through reflection/magnification of 
pressure waves, and through cavitation (Boulos et al. 2004). Skeletonisation 
by trimming also results in the need to re-allocate demand from removed 
nodes to nearby retained nodes, which results in modifications to pipe 
velocities and the potential for inaccurate contaminant consequence 
assessment (Bahadur et al. 2006). Attempts have been made to simulate WDN 
using all pipes models (Jacobsen and Kamojjala 2009), however the necessary 
detail of observations required for accurate calibration and prediction, 
alongside computational expense, poses further problems (see below).  
 
 
 
 
 

 
 
Figure 4. An original Water Distribution Network (A), and the equivalent 
network after skeletonisation (B; Modified from Jung et al. 2007)  
 
 



 

Quantifying Uncertainty in Urban Water Systems (UWS) Modelling.   
© PREPARED - 15 - February 2011 

 

 
 

 
Figure 5. Transient head recorded at node 242 (Figure 4) following Pump Trip 
(Jung et al. 2007). 
 

2.4.2 Demand 
 
Water Distribution Networks are demand driven systems. Hence uncertainty 
surrounding the representations of demand has a large impact on the quality 
of nodal head predictions and system performance. Demand uncertainty 
consists of both aleatory uncertainty and epistemic uncertainty. Aleatory 
uncertainty consists of natural temporal variability in demand over, minute, 
hourly and daily timescales (Figure 6; Davidson and Bouchart 2006; Herrera 
et al. 2010), and over monthly and annual timescales (Buchberger and Wells 
1996; Zhou et al. 2001). Such dynamics reflect work, commercial and domestic 
usage throughout the day and week, and changes in response to seasonal and 
climatic changes over the year.  
 
The first type of epistemic uncertainty concerns the nature of the demand 
patterns, and what we do not know about this inherent variability when 
modelling WDN in both time and space. This uncertainty may be termed 
two-dimensional uncertainty, containing both aleatory and epistemic 
uncertainty (Sun 2010). Such uncertainty may be constrained for WDN model 
input through greater spatial and temporal data collection of water properties 
such as flow rates and water quality data (Buchberger and Wells 1996; 
Jonkergouw et al. 2008). However, these data sources are costly to derive. 
Other data have been collected to help constrain demand patterns such as 
input flows (Branisavljevic et al. 2009), or through the development of 
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predictive models for water demand, based on more measureable climatic 
variables (Herrera et al. 2010). Empirical data collection suggests differences 
between residence consumption may not be represented easily by such 
models (Buchberger and Wells 1996; Propato et al. 2010), and may at best 
reflect the lumped demand of a given area. Stochastic models may better 
represent local residence demands (Garcia et al. 2004), and Artificial Neural 
Network (ANN) calibrated based on previous water consumption (Cutore et 
al. 2008). Future demand uncertainty also affects understanding of the 
adequacy of current UWN capacities, and planning of future capacity to deal 
with changing populations and the impacts of climatic changes (Babayan et 
al. 2005; Farmani et al. 2005). Although data may be able to constrain the 
general patterns of daily and annual demand, like future demand, the 
prediction of fire flows is also uncertain. Errors associated with data, and 
predictions derived from models used to constrain demand patterns, need to 
be considered when propagated through WDN models. 
 

 
Figure 6. Evolution of mean water demand for a sector of a city in Southeast 
Spain, with 5000 population (Herrera et al. 2010). 
 
 
The second type of epistemic uncertainty concerning water demand relates to 
the manner in which demand is represented within the WDN. Demand is 
typically expressed at network nodes. However, consumers typically extract 
water along the pipes within the network. Given most water use is relatively 
insignificant, allocated such demand to the nearest node will not adversely 
affect model performance (Walski et al. 2003). However, Giustolisi and Todini 
(2009) show that allocating water demand to the nearest node leads to errors 
in the prediction of head losses, and propose a correction to pipe hydraulic 
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resistance to overcome this problem for uniform pipe demand patterns 
(Giustolisi and Todini 2009). This was later extended to consider non-uniform 
demand pattern along pipes (Giustolisi 2010). The relative uncertainty 
associated with this epistemic uncertainty may be insignificant, however, 
compared to aleatory uncertainty concerning the temporal distribution of 
demand.  
 

 
Figure 7. Seasonal and annual cycle of water consumption for a metropolitan 
area of Melbourne, Australia (Zhou et al. 2001) 
 
 
During skeletonisation, where dead ends are trimmed from the network, 
demand is reallocated to the nearest upstream node to preserve the total 
demand of the system. Such lumping can lead to errors in the reflection and 
dissipation of pressure waves during transients (Jung et al. 2007). Lumping 
can also affect steady state simulations. When demand from high elevations is 
lumped with nodes with lower elevation, simulations that predict sufficient 
pressure at the lumped node may incorrectly assume sufficient pressure in 
the higher elevation node (Walski et al. 2003). 
 
Water Distribution Network modelling approaches are typically demand-
driven (e.g. EPANET2; Rossman 2000), which assumes that consumer 
demands are satisfied, regardless of the pressures throughout the system. 
Notwithstanding the issues concerning demand estimation considered above, 
a demand-driven system will fail to adequately simulate abnormalities in the 
system resulting from, for example, fire flow or pipe leakage.  In pressure-
driven modelling approaches (e.g. Giustolisi et al. 2008a; Giustolisi et al. 
2008b; Pathirana 2010), a node is supplied only with full demand if a 
minimum pressure at the node is obtained. Such models have been applied to 
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investigate the impact of valve shutdowns (Giustolisi et al. 2008a), and better 
represent pressure dependent leakage losses in system models (Giustolisi et 
al. 2008b), however, the approach may require extensive data to determine 
the relationship between pressure head and flow (Ozger and Mays 2004). 

2.4.3 Pipes and roughness 
 
Pipes form an integral part of the WDN, distributing water between nodes 
from source to customer. During model setup the diameter and length of 
pipes in the system needs to be specified, along with pipe roughness to solve 
the conservation of energy equation for pipes. Roughness, alongside demand, 
represents one of the most significant sources of uncertainty in WDN 
modelling. As pipes age deposits build up due to calcium carbonate 
precipitation, and in the case of iron pipes due to the build up of oxidation 
products (Boulos et al. 2004). Such deposits will reduce the pipe diameter, 
increase roughness, and reduce flow efficiency. The extent of pipe 
deterioration will depend upon pipe material, water quality, and pipe flow 
over time, making pipe roughness increasingly difficult to predict with 
increasing age. 
 
This type of epistemic uncertainty is difficult to constrain directly due to the 
difficulty of measurement, and the effectiveness of roughness values that 
have little direct physical meaning. Roughness values are usually constrained 
(calibrated) with junction pressure measurements, and although technically 
different, also represent the effects of changes in pipe diameter on flow 
pressures. Such observations are difficult to obtain over the whole network 
due to cost. Methods have been employed to optimally locate limited 
measurement locations such that the pressures measured are most sensitive 
to changes in pipe roughness (de Schaetzen et al. 2000). Different optimisation 
methods used to locate sensors may result in different observational patterns, 
and lead to different parameter calibrations, contributing to model 
uncertainty. 
 
The difficulty of obtaining enough distributed measurements to constrain all 
pipe roughness results in the need to group pipes into roughness categories 
to reduce the dimensions of the calibration problem (Mallick et al. 2002). 
However, as the number of parameters reduces, so does model accuracy. 
Methods to group pipes include grouping of pipes in a similar geographical 
area (Bascia and Tucciarelli 2003) and the application of k-means clustering to 
group pipes based on age and diameter in a network (Kumar et al. 2010). 
Zonal grouping is advantageous in that pipes exposed to similar water 
quality conditions are grouped, however this will group close pipes 
irrespective of diameter or age. Calibration predictions derived from the k-
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means clustering method will be sensitive to the number of groupings and 
the method by which the clusters are initiated, further contributing to model 
uncertainty. Other methods relate pipe roughness to age, however, the choice 
of function to relate these variables is uncertain, and likely to be system 
dependent (Koppel and Vassiljev 2009). 
 

2.4.4 Pumps, valves and tanks 
 
Pumps, valves and tanks are key system components allowing managers to 
control the movement of water in the distribution network. Pumps are 
designed to raise the hydraulic head to overcome elevation differences and 
friction losses in the system. The performance of a pump in a network model 
is simulated using a pump curve that relates head to discharge. The 
relationship is typically supplied by the manufacturer of the pump, however, 
in practise pumps do not typically operate at this efficiency (Walski et al. 
2003), and over time performance will deteriorate due to cavitation and wear 
(Hirschi et al. 1998). Further uncertainty may be introduced depending on 
how well the pump curve relationship is approximated, by either linear, 
polynomial or exponential relationships during model setup. Pumps 
represented as links between nodes in a WDN model may ignore important 
head losses along the pipes between the pump and nodes, which is also the 
case when representing pressure reducing valves (Walski et al. 2003). 
 
Valves control the flow of water through the WDN, and operate in different 
ways depending on their purpose. Common valve types include isolation 
valves, which shut off flow to part of the network, check valves which restrict 
water flow in one direction, pressure reducing valves (PRV’s), which prevent 
excess pressure, and flow control valves (FCV’s) which limit flow rates. The 
effect of some valves may be adequately represented by a minor loss 
coefficient, and potentially incorporated into a pipe roughness coefficient. 
Other valves such as PRV’s and FCV’s may be represented explicitly by their 
maximum pressure or flow setting and minor loss coefficient. Air release 
valves are often not included within WDN models, however, may be 
significant to represent in transient analysis (Walski et al. 2003). 
 
Tanks store water in the distribution network, and are characterised by a 
maximum and minimum capacity, and a rating curve between head and 
storage volume. In steady–state simulations the hydraulic head remains fixed, 
however in EPS, when inputs and outputs to the tank change over time, 
changes in tank water level need to be simulated. 
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2.4.5 Water quality 
 
Accurate predictions of water quality depend on the quality of the underlying 
hydraulic model, and the additional modelling assumptions required. Water 
quality in a network can be described by the advection-dispersion-reaction 
equation (Blokker et al. 2008). Given water quality is dominated by advective 
transport (Pasha and Lansey 2005), the dispersion terms are neglected in 
EPANET2 (Rossman 2000). Whilst this is a reasonable assumption for 
turbulent flows, dispersion is important in laminar flows (Blokker et al. 2008).  
 
When simulating the movement of both conservative and non-conservative 
substances, a key assumption applied in WDN (e.g. EPANET2; Rossman 
2000) is that of complete and instantaneous mixing at network junctions. 
Computational Fluid Dynamics (CFD) modelling and experimental work has 
demonstrated that the perfect mixing assumption is inaccurate (Austin et al. 
2008; Romero-Gomez et al. 2008), which leads to erroneous predictions of 
pollutant concentration within the network. A water quality model names 
AZRED has been developed to overcome the perfect mixing assumptions 
within EPANET2 (Choi et al. 2008).  
 
In addition to the issues of hydraulic model uncertainty discussed above, 
velocity prediction along pipes is essential for knowing the fate and transport 
of contaminants, and is important in controlling chlorine decay rates (Menaia 
et al. 2003). Velocity data may be obtained from conservative tracer studies 
(Savic et al. 2009). Skeletonisation affects the accuracy of water velocity 
predictions, but also, by lumping demand (consumption) at nodes, the 
population actually affected by a given contamination event may be incorrect 
(Bahadur et al. 2006). Relatively little attention has been given to joint 
calibration of WDN and water quality models, which is surprising given the 
dependencies of the latter on the former. Water quality models are typically 
calibrated assuming the underlying WDN model is correct. However, given 
that water companies are more likely to be concerned with delivering (and 
therefore calibrating for) correct water pressure (Savic et al. 2009), velocity 
predictions required for accurate water quality modelling are unlikely to be 
correct.  
 
When simulating non-conservative substances, such as chlorine and 
disinfectant by-products, additional equations and model parameters are 
required. Chlorine decay has been widely simulated using an exponential 
decay formula; the exponent in the formula is controlled by both decay 
within the bulk of water itself, and decay at or near the wall of the pipe 
(Jonkergouw et al. 2005). The rate of decay at the wall of the pipe is pipe 
dependent, and relates to pipe age and material, as well as water quality 
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passing through the pipe (Hallam et al. 2002). The difficulty of quantifying 
pipe characteristics for all pipes in the network again results in the need to 
group pipes for calibration purposes (Munavalli and Kumar 2005), which 
introduces uncertainties as outlined previously. 
 

2.5 Sources of Uncertainty in Urban Waste Water Systems (UWWS) Modelling 
 
UWWS consist of three principal components: Sewer System, Wastewater 
treatment plant, and receiving water body (Figure 1). The combined system 
complements the delivery of potable water to consumers and industry by 
removing wastewater and rainwater through the sewer system, either directly 
to the receiving water body through Combined Sewer Overflow (CSO), or via 
the Wastewater Treatment Plant (WWTP). UWWS have been designed and 
implemented to meet two principal objectives (Korving et al. 2003): first, to 
mitigate flooding during storm events, and second to provide good sanitation 
for urban areas by reducing exposure to faecal contamination. Two types of 
system exist to meet these objectives: separate systems and combined 
systems. Separate systems have two pipe networks, one for transporting 
excess rainwater/runoff, and the other for transporting wastewater via the 
WWTP to the receiving water body. Most major cities around the world have 
combined sanitary and storm-water flows. Although a combined system has 
the advantage of fewer pipes, during rainfall events the WWTP has to deal 
with a larger volume of relatively dilute wastewater, increasing processing 
costs. In addition, when the sewer system reaches hydraulic capacity, excess 
untreated water enters directly to the water body (CSO), with potentially 
detrimental impacts on water quality (Casadio et al. 2008). 
 
Traditionally, each component of the UWWS was managed separately, often 
by a different company, with management aims of meeting legal emission 
limits without considering direct consequences for receiving water bodies 
(Devesa et al. 2009). This situation is reflected in the wide range of sector 
specific simulation tools (Butler and Schutze 2005). However, facilitated by 
advances in numerical modelling (Butler and Schutze 2005), GIS and data 
collection techniques (Horoshenkov et al. 2003; Mizaikoff 2003), integrated 
management approaches have developed to meet a number of requirements: 
First to meet concerns for the vulnerability of water quality (Beck 2005), as 
exemplified by the introduction of the Water Framework Directive (WFD; 
Bloch 1999); and second in public expectation and involvement in attaining 
higher levels of service (Pahl-Wostl 2005). 
 
In order to meet the requirements listed above, a number of approaches 
moving towards integrated modelling of UWWS have been developed both 
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in the research literature (Butler and Schutze 2005; Vanrolleghem et al. 2005), 
and commercially (e.g. WEST and SIMBA; Rauch et al. 2002). Such models are 
required to help optimise the performance of existing UWWS, by explicitly 
accounting for interactions between different components of the system 
(Butler and Schutze 2005). In doing so the models facilitate incremental 
adaptation (Butler and Parkinson 1997), and delay the need for constructing 
new and expensive infrastructure. However, the integrated UWWS is 
complex, involving a number of epistemic and aleatory uncertainties 
(Benedetti et al. 2008; Korving et al. 2003). Such uncertainties need to be 
understood, quantified and reduced to maximise the use of models in system 
management. 
 

2.5.1 Rainfall uncertainty 
 
Rainfall represents the key input to UWWS during Wet Weather Flow 
(WWF), and enters into the river via surface runoff and groundwater flow, or 
via the sewer network (Figure 1). Excess rainwater during storm events may 
cause sewers to exceed their hydraulic capacity; in such cases urban flooding 
may occur (surcharge), and the WWTP may no longer be able to deal with 
wastewater, leading to CSO discharges. These discharges are a particular 
problem in sewer systems resulting in potential pollution of water courses 
(Beck 1996). Uncertainty surrounding rainfall may be considered as both 
aleatory and epistemic. 
 
Aleatory uncertainty relates to natural spatial and temporal variability in 
rainfall. Temporally, rainfall varies over annual timescales reflecting seasonal 
variations and climatic circulation patterns (Rodriguez-Puebla et al. 1998); 
over daily timescales due to convective processes in the atmosphere (Kutiel 
and Sharon 1980; Kutiel and Sharon 1981); and over storm event timescales 
relating to the movement of clouds/rain cells  (Morin et al. 2006). Uncertainty 
surrounding the temporal sequence of rainfall events is important to 
understand, specifically as the magnitude and frequency of rainfall events 
exerts a significant control on the performance of the sewer system. For 
example in Helsinborg, Sweden, CSO events are associated with convective 
rainfall events which generally occur in late summer and autumn (Semadeni-
Davies et al. 2008). The magnitude of the first flush phenomenon, where 
pollutants concentrations are higher during the initial stages of a storm event 
(hysteresis), have been found to depend on event magnitude (Gupta and Saul 
1996), and on the length of the antecedent dry period for both separate sewer 
systems, relating to the build up of dry weather flow deposition and traffic 
related pollutants on the surface (Krein et al. 2007). In some environments the 
first flush phenomenon is considered too scarce to elaborate treatment 
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strategies (Saget et al. 1996), and not simply related to rainfall (Deletic 1998), 
reflecting a complexity of processes and factors affecting the phenomena 
(Bertrand-Krajewski et al. 1998). The seasonal phenomenon is particularly 
important in environments with Mediterranean type climates that experience 
long dry periods (Asaf et al. 2004; Lee et al. 2004). This situation may be 
exacerbated because of future predictions of extended drought periods 
(Christensen et al. 2007). The importance of temporal effects on pollution, 
however, depends on the site and the types of pollutant loads considered 
(Gupta and Saul 1996), and uncertainty relating to mobilisation of sediment 
(Kanso et al. 2005).  
 
Spatially, rainfall varies over large scales relating to climatic patterns (e.g. 
over the Iberian peninsula; Rodriguez-Puebla et al. 1998) and continental 
topography (Jang 2010); over sub-catchment scales in response to local 
topographic forcing  (Chaubey et al. 1999)  and wind shelter (Sevruk and 
Nevenic 1998);  and over short distances  (102m) at event timescales in 
response to the spatial structure of convective rainfall cells (Faures et al. 
1995). Spatial patterns in rainfall may be induced by the presence of the urban 
area itself; studies have identified that by promoting convective heating, 
urban areas may increase local rainfall (Jauregui and Romales 1996; Thielen 
and Gadian 1997). However, the production of aerosols and other pollutants 
in cities may lead to rain suppression (Rosenfeld 2000). In order to quantify 
aleatory rainfall uncertainty as input to UWWS models, measurements are 
required, which are themselves uncertain. 
 
Epistemic uncertainties in rainfall measurements result from measurement 
errors and errors in the spatial and temporal resolution of the phenomena. 
Point rainfall measurements are typically obtained from rain gauges, such as 
tipping bucket and Hellmann gauges. Rain gauge measurements are subject 
to systematic errors relating to wind speed (Sevruk 1996; Sevruk et al. 1994; 
Sevruk and Nespor 1998), rainfall intensity (Ciach 2003), evapotranspiration, 
and calibration error (Rauch et al. 1998; Stransky et al. 2007), and random 
errors due to data transmission, mechanical problems and clogging (Rauch et 
al. 1998).  
 
For integrated urban modelling rainfall time series with a temporal resolution 
of the order of minutes are potentially required (Rauch et al. 1998).  In tipping 
bucket rain gauges such a resolution may not be achieved depending on 
rainfall intensity, introducing uncertainty into the nature of temporal rainfall 
patterns. The temporal resolution of rainfall has been shown to affect urban 
drainage model performance and uncertainty (Aronica et al. 2005). Point 
rainfall measurements require spatial interpolation for input to sewer models. 
The assumption of uniform rainfall, which is often made due to a low 
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resolution of rain gauges, introduces significant error. As in hydrological 
applications (Yatheendradas et al. 2008), rainfall uncertainty may dominate 
over model and parameter uncertainty for the prediction of sewer flow 
emissions (Willems 1999). Other interpolation methods have used 
topography (Goovaerts 2000), stochastic methods for reproducing rain cells 
(Willems and Berlamont 1998), Artificial Neural Networks (Sivapragasam et 
al. 2010), and conventional interpolation procedures (Bargaoui and Chebbi 
2009) to constrain uncertainty in the rainfall field. However, accuracy in 
interpolation is strongly dependent on the density and quality of point 
measurements.  
 
Over the latter decades of the twentieth century, rainfall radar has been 
increasingly used, alongside point rainfall measurements, to reproduce the 
rainfall field for urban sewer studies (Vieux and Vieux 2005). Although a 
series of radar stations may provide complete spatial coverage of the area of 
interest, the algorithm used to convert a radar signal to rainfall intensity often 
requires bias correction due to uncertain parameters (Vieux and Vieux 2005). 
Further, runoff predictions may be sensitive to the resolution of radar 
measurements (Ogden and Julien 1994). Point gauge measurements are 
typically used for bias correction (Campolongo et al. 2007), which as 
discussed above are themselves uncertain. Such uncertainty needs to be 
propagated through UWS models (Collier 2009). 
 
Many urban sewer systems are situated in wider hydrological catchments. In 
such circumstances, rainfall does not directly enter the sewer system, but 
enters via depression storage, infiltration, overland flow and through flow. 
There is considerable uncertainty surrounding the rainfall-runoff process 
(Wagener et al. 2003), and even more uncertainty concerning the transport of 
sediment and pollutants during runoff, both from agriculture (Beven et al. 
2005) and urban environments (Deletic et al. 2000). This is a particular 
problem for understanding the potential impacts of CSOs during wet periods, 
as the state of the river will be independently altered by rainfall-runoff.  A 
number of methods discussed in Section 3 for constraining uncertainty in 
UWS modelling have been initially developed for application to conceptual 
rainfall-runoff modelling (Kapelan et al. 2007; Vrugt et al. 2003). Where runoff 
entering the UWWS cannot be monitored, catchment models or urban surface 
runoff models may be applied in conjunction with an UWWS model 
(Djordjevic et al. 1999). However, liked models of water demand used as 
input to WDN models, such models also contain considerable uncertainty 
that needs to be propagated through the UWWS model. 
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2.5.2 Dry weather Flow 
 
Dry Weather Flow (DWF) consists of flow outputs from domestic and 
industrial users into the UWWS (Figure 1). Similar to water consumption 
(demand) in the WDN, uncertainty in DWF is both aleatory, reflecting 
changing consumer inputs over different timescales, and epistemic because of 
the difficulty in quantifying the volume and quality of waste water from 
consumers and industry. Uncertainty in DWF from source is important to 
understand as it is the main source of pollution to the UWWS, and is 
important to constrain for isolating the action of within sewer processes. 
 
Domestic wastewater may be made up of contributions from a variety of 
different household appliances (e.g. WC, Shower, Dishwasher, Sink, Washing 
Machine), each with their own patterns of use that vary between weekday 
and weekend (Butler 1993; Friedler et al. 1996), and diurnally (Figure 8; 
Figure 9; Almeida et al. 1999). For example, Butler (1993) identified the WC as 
the most frequently used appliance throughout the day with a well defined 
morning peak in weekdays, and a smaller and lagged peak during weekends. 
The WC alongside the kitchen sink has been identified as the largest 
contributor to volume waste and for the majority of water quality 
determinands (Almeida et al. 1999). Uncertainty in the temporal sequence of 
pollution also results as different types of pollutants are produced by 
different appliances in different quantities (Figure 8), which each may have 
multiple functions, and therefore loads (Almeida et al. 1999; Friedler and 
Butler 1996). Further aleatory uncertainty results from different usage 
amongst different users, which has been found to dominate uncertainty 
introduced by different types of WC when considering risks of overloading a 
treatment plant (Wong and Mui 2007). 
 

 
Figure 8. Diurnal pattern for the total COD load, proportions produced per 
appliance (Almeida et al. 1999). 
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Figure 9. Diurnal pattern for load in wastewater for CODt, PO4, TSS, NH3 and 
NO3 (Almeida et al. 1999). 
 
There is significant epistemic uncertainty in the nature of DWF from domestic 
properties, owing to the difficulty of measuring actual discharge per 
household. Actual volume and pollutant loads have been determined by 
consumer survey (Almeida et al. 1999; Wong and Mui 2007), coupled with 
appliance measurement for average usage and literature figures for different 
pollutants (Siegrist et al. 1976) . Therefore, there is uncertainty regarding the 
reliability of multiplying up short period measurements with consumer 
survey information, as both may not be representative of reality. 
 

2.5.3 Sewer System Uncertainty 
 
Most sewer systems in Europe are combined sewer systems, with the 
traditional purpose of removing storm water as fast as possible from cities to 
minimise flood risk (Delleur 2003). However, with increasing concern over 
water quality, sewers cannot simply be seen as inert conveyors of material. 
Sewer processes are complex, with the following key components (Ashley et 
al. 1999): hydraulics, sediment transport, advection-dispersion and 
biochemical water quality processes (Figure 10). 
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Figure 10. Within sewer Transport and Oxygen Processes (adapted from 
Garsdal et al. 1995; Rauch et al. 2002) 
 
 
Whilst the modelling basis of many of these components is well developed 
and understood (low epistemic uncertainty) due to sound conceptual and 
mathematical understanding of the system (e.g. St. Venant equations for 
sewer hydraulics) there are a number of significant problems in deriving 
empirical information (Ashley et al. 1999): First, there are logistical difficulties 
of actually measuring certain processes within sewer system; Second, even 
when such processes can be measured, economic or logistical issues prevent 
extensive distributed measurements; Third, extreme spatial and temporal 
variability in sewer systems poses difficulties for constraining parameter and 
system state uncertainty in distributed sewer models (Jack et al. 1996). For 
example, hydraulic roughness, a key parameter in sewer system hydraulic 
models, exhibits significant spatial and temporal variability depending on 
within pipe sediment (Pomeroy 1967) and biofilm formation (Guzman et al. 
2007), which when deposited also modifies sewer pipe geometry and the pipe 
depth-discharge relationship (Ackers et al. 1996). Further uncertainties arise 
in defining pipe particle size distribution for sediment entrainment modelling 
(Schellart et al. 2010). Therefore, even if model description may be considered 
perfect (no structural uncertainty), models are heavily reliant on quality data 
that is unavailable to constrain such a model. 
 
Structural uncertainty, however, does exist in sewer system models, first, 
because of a lack of understanding of a number of processes. For example, 
there is uncertainty regarding the nature of sediments in transport near the 
bed, as reflected in poor performance of existing sediment transport models 
applied to sewer systems (De Sutter et al. 2003). Many existing models do not 
represent sufficient size fractions for sediment transport prediction, and 
cohesive sediment transport and deposition (Ashley et al. 1999). Second, 
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model simplifications are necessary due to system complexity and 
computational resources (Fischer et al. 2009), leading to known structural 
uncertainty. For example, simplifications of the fully dynamic 1D St Venant 
equations to diffusive wave and kinematic wave have been applied to sewer 
systems, in addition to conceptual store models when computational times 
and data are not available/required to support a more detailed model 
representation (Vaes and Berlamont 1999). Structural conceptual model 
uncertainty may be constrained through calibration to more dynamic models 
that can, for example, account for backwater effects (Sartor 1999). 
 

2.5.4 WWTP uncertainty 
 
A WWTP model typically consists of an ensemble of components that 
typically include a clarifier, an active sludge model, hydraulic model, oxygen 
transfer model, and sedimentation tank model. The WWTP is subject aleatory 
input uncertainties associated with dry weather flow and rainfall input, as 
well as potential modification of flow volume and quality in the sewer system 
due to sewer residence times and within sewer processes (Nielsen et al. 1992; 
Van Veldhuizen et al. 1999). Further, when influent contains a non negligible 
amount of industrial wastewater, model modifications and data for specific 
calibration may be required (Coen et al. 1998; Ky et al. 2001). 
 
Despite the development of complex models to represent the processes 
governing the different components of the WWTP (Gernaey et al. 2004), there 
are difficulties in applying such models, particularly when integrated with 
other system components, due to parameter demands that are often 
substantial and difficult to constrain (Sin et al. 2009).  For example, 
parameters governing the active sludge process are often determined from 
laboratory studies (Van Veldhuizen et al. 1999), which may not be 
representative of field conditions. Coefficients to correct for temperature in 
ASM2 are only valid between 10oC and 25oC  (Henze et al. 1995), which may 
not be representative of field conditions. Further parameter uncertainty may 
occur when models, which are often calibrated for dry flow conditions, are 
applied to wet flow conditions (Gernaey et al. 2004).  
 
Given the complexity of biological processes a certain amount of greyness 
may need to be introduced into process representation. Black-box models, 
calibrated based on input and output data may provide better system 
representations in cases when white-box models fail to correctly describe all 
system dynamics (Gernaey et al. 2004). A failure to adequately characterise 
reactor hydraulics has been identified as a limitation in extending sludge 
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models beyond the location of calibration (Cinar et al. 1998), exemplifying the 
potential for model over-fitting and uncertain process representation. 
 
Other simplifications are often applied in WWTP models leading to known 
structural uncertainty. For example, only in particular cases are hydraulic 
models applied explicitly to simulate flow through reactors (De Clercq et al. 
1999), which are typically assumed instantaneous (Rauch et al. 2002). Further, 
Clarifiers are often applied in reduced dimensional form (e.g. 1D), and are 
therefore not fully representative of the 3D process (Takacs et al. 1991). 
Finally sludge models have been identified as deficient in the representation 
of settling properties (Harremoes and Rauch 1999), of which there is debate 
regarding the best settling functions applied to clarifiers (Rauch et al. 2002). 
Further details of structural uncertainties in the WWTP may be found else 
ware (e.g. Gernaey et al. 2004; Rauch et al. 1999) 
 

2.5.5 River Uncertainty 
 
Rivers are the primary receiving water bodies for many UWWS, however, 
waste water systems also discharge effluent and CSOs into lakes and coastal 
waters. Rivers are vulnerable to oxygen depletion resulting from discharge of 
degradable organic matter, and eutrophication owing to sewer and WWTP 
effluent nutrient loads (Harremoes and Rauch 1999). Rivers have the same 
general input uncertainties as described for sewer systems, in addition to 
uncertain water volume (and quality) derived from non-urban sources (e.g. 
agricultural: Bilotta and Brazier 2008; Bilotta et al. 2008). The quality of 
receiving water bodies is one of the key policy drivers of integrated 
modelling approaches, and therefore data obtained from rivers on water 
quality (e.g. sediment, COD, O, N, P) are essential to evaluate performance of 
UWWS and their models. However, data relating to the relationship between 
water quality and river properties, such as ecology, is often lacking, because 
knowledge of such processes in uncertain (Bilotta and Brazier 2008; Borchardt 
and Statzner 1990). For example, different organisms respond differently to 
certain flow dynamics/exposures, and may have different recovery times. 
The determination of ecologically meaningful hydrological parameters and 
thresholds is difficult owing to nonlinear dynamics and multiple causes 
(Groffman et al. 2006), and limited to specific case studies (Borchardt and 
Statzner 1990). Furthermore, traditional measures of pollution impact 
(emission standards), such as the frequency or volume of CSO spill (Lau et al. 
2002), may not be compatible with measures of stream water quality standard 
(Freni et al. 2010), nor reflect actual pollution (Lau et al. 2002). Therefore there 
are difficulties in imposing which properties emitted from the UWWS to 
focus on when monitoring for integrated modelling studies (Vanrolleghem et 
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al. 2001). Such data are essential to understand given system complexity and 
resources available for data collection/remediation, which are often limited 
when conducting uncertainty analysis of integrated models (Mannina et al. 
2006; Willems and Berlamont 2002). 
 
Receiving water bodies may be simulated using standard hydraulic 
approaches as applied to sewer systems (St Venant and simplifications) and 
conceptual store models for water quantity, and mass-transport advection-
dispersion equations for water quality (Butler and Schutze 2005). Issues 
surrounding epistemic uncertainties in these two fundamental model 
components are similar to those discussed in section 2.4.4 and 2.4.5 (see also: 
Reichert et al. 2001; Reichert and Vanrolleghem 2001); model complexity may 
be increased, if possible, to reduce structural uncertainty, however this comes 
at the expense of needing to constrain more parameters, which due to data 
limitations are themselves uncertain. If model structural complexity is 
reduced to a simpler conceptual approach it is often difficult to infer the 
physical meaning of model parameters, which require sufficient data for 
calibration. 

2.6 Conclusions 
 
Both WDN networks and UWWS are subject to structural, parameter and 
data uncertainties. Data/Measurement uncertainties are primarily associated 
with natural variability in driving conditions; for WDN this uncertainty 
primarily resides in demand uncertainty, and for UWWS such uncertainty 
surrounds dry weather inputs from domestic and industrial sources, and 
rainfall inputs. Further models applied to both systems have known 
structural uncertainties given the complexity of the systems and the need for 
system simplification from both computational and data constraints. In 
addition, model parameters employed in models applied to both systems are 
difficult to constrain because of the difficulty of system measurement. Such 
uncertainties and constraints are well understood conceptually, as they are in 
a range of other modelled systems. However, to address the aims of the 
PREPARED project, and optimally use existing UWS infrastructure, formal 
methods are required to encode this uncertainty within models applied for 
system management. Section 3 and Section 4 will now consider methods for 
dealing with Parameter, Data and Structural uncertainties. 
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3 Calibration, uncertainty quantification 
and reduction in Urban Water Systems 
(UWS) 

3.1 Introduction 
 
Section 2 introduced the key types of uncertainty that exist in general systems 
modelling, and details of uncertainties that exist specifically in the context of 
urban water systems modelling. Two key issues exist when faced with the 
problem of dealing with uncertainty in systems modelling. First, methods are 
required to move beyond epistemological understanding, and formally 
represent our uncertain knowledge of system variables, states, and 
parameters mathematically. Probability theory has been the dominant 
paradigm for representing uncertainty (Hall 2003), however, more recently 
other methods such as fuzzy methods (Vamvakeridou-Lyroudia et al. 2005) 
and evidence theory (Sadiq et al. 2006) are regarded as legitimate extensions 
of classical probability (Helton et al. 2004). As Hall (2003) argues, the choice 
between different methods for formally representing uncertainty in systems 
modelling is no longer one of mathematical coherence; rather the argument 
concerns the relative parsimony of different theories, and issues of elicitation 
(Hall 2003). Of particular relevance to the point of elicitation relates to the 
quality and quantity of data available to define our uncertainty about specific 
system parts, which may be lacking (Dubois 2010). Further issues that need to 
be addressed concern the practicalities of combining mathematical 
representations of uncertainty, and propagating them through systems 
models to define predictive and parameter uncertainty to inform the decision 
making process. 
 
Section 3 will review methods applied to quantify and reduce parameter, 
input data and structural uncertainty through the calibration process. Many 
methods applied to deal with uncertainty have been initially applied and 
developed more fully in related fields, such as hydrology (Vrugt et al. 2003) 
and climate modelling (Zhang and Pu 2010), and only recently applied in an 
UWS context (e.g. Kapelan et al. 2007). Where relevant, examples of the 
different methods applied within the context of UWS modelling will be 
expanded upon, alongside methods currently not applied within UWS 
modelling. Appendix A contains a tabular classification of some applications 
of the methods reviewed in Section 3. 
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3.2 Calibration and Uncertainty Quantification 
 
Calibration may be defined as the method by which parametric uncertainty in 
models is reduced (Savic et al. 2009), and of all types of uncertainty, 
parameter uncertainty has received the greatest attention since initial 
development of computer models for urban water systems in the 1970’s 
(Savic et al. 2009). In calibration the proposed model, f, is typically confronted 
with a vector (in time or space) of observed system behaviour: Z = ,ଵݖ) … ,  ,(௡ݖ
which may represent both system output, and system states. The vector of 
residuals ∈௜   is defined as the difference between Y and Z (in the case of 
system outputs): 
 
߳௜(ݔ,܈|ߠ଴ (U,ܤ, = ௜ݖ - (U,ܤ,଴ݔ|ߠ)௜ݕ       ݅ = 1, … ,݊                                                     (3.1)                                        
   
 
Traditional approaches have sought to minimise the vector of residuals to 
zero by adjusting model parameters, without considering structural 
uncertainty and input data uncertainty. Initial approaches to reduce 
parameter uncertainty through calibration in WDN models were based on 
trial and error procedures (Bhave 1988), which by manually adjusting model 
parameters, seek to maximally reducing an objective (though often 
subjectively chosen) function, such as the standard least squares problem (E): 
 
minimise ܈|ߠ)ܧ, (U,ܤ,଴ݔ = ∑ ߳௜(܈|ߠ, U)ଶ                                                    (3.2)௡,ܤ,଴ݔ

௜ୀଵ               
     
 
Manual calibration has also been applied extensively in WWTP model 
calibration (Koch et al. 2001a; Koch et al. 2001b; Petersen et al. 2002; Van 
Veldhuizen et al. 1999), and in this context is termed the process engineering 
approach (Gernaey et al. 2004). The process is effectively a local search 
process of the parameter hypercube, which may fail to find all well 
performing parameter sets. The engineer therefore requires expert process 
knowledge and experience for manual calibration (Gernaey et al. 2004) 
 
Explicit calibration approaches have also been applied that solve the steady-
state mass-balance and energy equations for the WDN, where unknown 
parameters are solved using the same number of equations (Ormsbee and 
Wood 1986). Where sufficient measurements are not available to constrain 
calibration parameters (an under-determined problem), parameters need to 
be grouped to make the problem at least even-determined (Bascia and 
Tucciarelli 2003; Kumar et al. 2010). The explicit methodology is limited for 
three reasons (Savic et al. 2009):  
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 The posed calibration problem must be at least even-determined. 
 Measurements are assumed 100% accurate and data errors are not 

considered. 
 Uncertainty in estimated parameters cannot be quantified. 

 
Both  manual and explicit calibration approaches are considered to only have 
historical significance (Savic et al. 2009), and have largely been superseded by 
implicit optimisation techniques in model calibration that are more flexible in 
dealing with uncertainties. 

3.3 Optimisation techniques 
 
Implicit optimisation techniques seek to minimise the value of an objective 
function (e.g. Equation 3.1) by applying an optimisation technique coupled 
with a hydraulic solver (e.g. EPANET2; Rossman 2000). Parameters are 
typically constrained, as in other techniques discussed later, by upper and 
lower search bounds (Savic et al. 2009). The optimisation technique operates 
within the search bounds of each parameter that in WDN typically include 
pipe roughness, node demands, and valve and pump settings, to minimise 
the objective function. A number of optimisation methods have been 
employed in this context for steady-state, EPN and transients simulation, 
including a Gauss-Newton sensitivity technique (Datta and Sridharan 1994), 
gradient-based optimisation (Lansey and Basnet 1991), Harmony Search 
algorithm (Kim et al. 2010), genetic algorithms (Shen and McBean 2010; 
Vitkovsky et al. 2000), and hybrid genetic algorithms (Kapelan 2002). Genetic 
Algorithms (GA’s) have also been applied in sewer system modelling (Rauch 
and Harremoes 1999; Tait et al. 2003), and WDN water quality modelling 
(Mulligan and Brown 1998). The majority of calibration approaches applied in 
WDN modelling have focussed on the most computationally efficient way of 
(maximally) reducing parameter uncertainty through calibration (i.e. finding 
the optimal parameter set), without explicitly quantifying the uncertainty in 
parameter values and model predictions. 
 
Calibration approaches have been developed, however, that consider 
multiple objectives; a single optimum simulation may not meet competing 
demands of, for example total operational/design cost versus water supply 
and quality (Farmani et al. 2006). In such cases Multi-objective algorithms, 
such as The Multi-objective Genetic Algorithm (Laucelli et al. 2010), The 
Preference Order Genetic Algorithm (Khu et al. 2008), The Artificial Neural 
Network Genetic Algorithm (Fu and Kapelan 2010), and The SCE-UA 
algorithm (Duan et al. 1992; Madsen 2000; Madsen 2003), can be applied to 
construct a Pareto Optimal Front between competing objectives.  
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Optimisation techniques have been criticised in that given uncertainties 
outlined relating to data uncertainty and incorrect model structure (as 
outlined for UWS in Section 2), a single optimal parameter set does not exist; 
within complex model (parameter) space a number of local optima may exist 
that produce as acceptable model fits as those found near the ‘Pareto’ optima 
(Beven 2006). In such cases it has been argued that the parameter probability 
density should be estimated (Beven 2006). 
 
 

3.4 First-order second-moment (FOSM) 
 
Uncertainty estimation in WDN has typically been achieved using the FOSM 
method (Bush and Uber 1998; Lansey et al. 2001), which estimates parameter 
or output variance by approximating a function with a linear Taylor series 
expansion. The method has been applied first following Lansey et al. (2001), 
to estimate variances in model parameters (e.g. Roughness, X) due to 
imprecise measurement errors, in for example pressure head (H): 
 

(ܺ)ݒ݋ܿ = ቈ൬
ܪߜ
ܺߜ
൰
்

ுଶߪ ൬
ܪߜ
ܺߜ
൰቉                                                                                              (3.3) 

                                                                                      
 
where ߪுଶ is variance in pressure heads. The diagonal elements of the 
covariance matrix define the variance of model parameters. Using the 
resultant covariance matrix for model parameters the FOSM method can be 
applied a second time to estimate uncertainty in model outputs (Kang and 
Lansey 2009; Kapelan et al. 2005): 
 

(ܼ)ݒ݋ܿ = ቈ൬
ܼߜ
ܺߜ
൰
்

(ܺ)ݒ݋ܿ ൬
ܼߜ
ܺߜ
൰቉                                                                                      (3.4) 

                                                                              
 
where X is a vector of model parameters, Z is a vector of model outputs, and 
cov(X) is the matrix of model input parameters. The diagonal elements of 
cov(Z) define the variance of predictive outputs. The FOSM method, which 
has also been applied in the context of water quality modelling (Kang et al. 
2009), has compared well in quantifying uncertainty in comparison to full 
Monte Carlo Simulations (MCS; explicit sampling across parameter space to 
define posterior and parameter uncertainty) for pressure head predictions 
and chlorine concentrations (Kang and Lansey 2009; Xu and Goulter 1998), 
notably under steady state conditions (Kang et al. 2009). However, the FOSM 
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method did not perform well in predicting chlorine concentrations under 
unsteady flow conditions (Kang et al. 2009). 
 
The FOSM method has several underlying assumptions and limitations that 
limit application of the method (Kang et al. 2009; Kapelan et al. 2007; Maskey 
and Guinot 2003): 

 The linear approximation of the method is only suitable at best for 
weakly nonlinear problems, or where parameter variance is low. 

 Assumes independence of calibration parameter values and 
measurement errors. 

 Assumes normality of calibration parameter values and measurement 
errors. 

 Requires calculation of derivatives of model variables with respect to 
parameters, which may be computationally demanding. 

 Output uncertainty is only described up to the second moment 
(variance), and so theoretical distributions are often assumed to 
describe the distribution of uncertainty. 

 
The FOSM method may not be applied readily to complex nonlinear 
problems; in such cases other methods (e.g. MSC) may be required to 
evaluate performance. 

 

3.5 Formal Bayesian procedures 
 
Probability theory has traditionally provided the basis for a mathematical 
description of uncertainty in engineering and a range of related scientific 
disciplines (Hall 2003; Helton et al. 2004). In practical modelling Bayesian 
Statistics has provided the basis to combine prior knowledge with a set of 
observations to make statistical inferences. The basis for this procedure is 
encapsulated in Bayes’ Theorem: 
 

(ܣ|ܤ)ܲ =
(ܤ|ܣ)ܲ ∙ (ܤ)ܲ

(ܣ)ܲ
                                                                                                   (3.5) 

   
where the conditional probability of B given A, P(B|A) depends on the 
marginal probabilities P(A) and P(B) and the conditional probability of A 
given B, P(B|A). Bayes’ theorem can be reformulated to incorporate all forms 
of uncertainty. In the (typical) case where only parameter uncertainty is 
considered, the posterior distribution Po(܈|ߠ) is dependent on the product of 
the prior distribution of the vector of model parameters Pr(ߠ) and the 
likelihood of predicting the observations conditional on the parameters 
P(ߠ|܈): 
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௢ܲ(܈|ߠ) =
(ߠ|܈)ܲ ∙ ௥ܲ(ߠ)

(܈)ܲ
                                                                                                 (3.6) 

 
where ܲ(܈) is a constant that normalises the posterior probability mass to 
unity. Bayes’ equation allows for subjective decisions regarding the nature of 
prior information, and as such is seen as a method for representing a degree 
of belief (an epistemic representation as opposed to a frequentist 
representation), and may be used iteratively as more data are gathered (Freni 
and Mannina 2010). In such cases the posterior becomes the prior, model 
simulations are conducted, and model output is confronted with new data. To 
implement the Bayesian approach to address uncertainty, four issues need to 
be considered: 

 Nature of prior information (e.g. shape of the prior probability density 
function (PDF) for each model parameter). 

 Choice of an appropriate likelihood function. 
 Choice of an appropriate error model. 
 In special cases uncertainty may be propagated analytically, but in the 

case of most models applied to urban water systems, approximate 
numerical methods typically based on a MCS are employed (Section 
3.9). 

 
Assuming first the least squares likelihood function (Equation 3.1 and 
Equation 3.2), and second that the residuals between measured and modelled 
output are mutually independent (non-correlated), homoscedastic, and 
Gaussian distributed with zero mean and variance (ߪ௘ଶ), the posterior 
distribution takes the following form (Vrugt et al. 2009b): 
 

௢ܲ(ݔ,܈|ߠ଴,ܤ,U)=c∙ ௥ܲ(ߠ)ෑ
1

ඥ2ߪߨ௘ଶ

௡

௜ୀଵ

exp ൭−
൫߳௜(ݔ,܈|ߠ଴,ܤ,U)൯ଶ

௘ଶߪ2
൱                                 (3.7) 

 
where c is a normalising constant. Uncertain prediction limits due to 
parameter uncertainty may be derived by running the model for all 
parameter sets over a given time series, and for each observation calculating 
95% confidence limits (Engeland et al. 2005). Uncertainty bounds are typically 
presented alongside the observed time series and optimal model prediction 
(Figure 11; Freni and Mannina 2010). 
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Figure 11. Uncertainty bounds reflecting parameter uncertainty in an urban 
storm water model derived for predictions of sewer outflow discharge in the 
Fossolo catchment, Bologna (Freni and Mannina 2010). 
 
Formal Bayesian procedures have been applied by Kapelan et al (2007) using 
the SCEM-UA optimisation algorithm for calibration of pressure head in a 
WDN model, and also in WDN modelling for calculating parameter 
uncertainty in chlorine decay models (Huang and McBean 2007; Huang and 
McBean 2008) and for leakage detection analysis (Poulakis et al. 2003).  
Formal Bayesian approaches have also been applied to calculate parameter 
uncertainty in storm water quality modelling (Freni and Mannina 2010; 
Kanso et al. 2006; Kanso et al. 2003), biochemical oxygen demand (BOD) 
modelling (Borsuk and Stow 2000), parameter uncertainty impacts on CSO 
emissions (Korving and Clemens 2002), and on modelling of in sewer 
sediment erosion (Kanso et al. 2005).  
 
When propagating parameter uncertainty through systems models, the 
nature of the prior PDF for each parameter needs to be determined. In 
practice such decisions are difficult due to the scarcity of prior information. In 
such circumstances a uniform prior distribution is typically adopted between 
a defined range (Kapelan et al. 2007), often termed a non-informative prior 
(Mantovan and Todini 2006). In the absence of strong information, uniform 
prior distributions have been advised in order not to underestimate 
prediction uncertainties when assuming stronger and poorly justified PDFs 
(Benedetti et al. 2008).  However, as Hall (2003) and others argue (Aven 2010), 
a uniform PDF represents a definite statement about the likelihood of a state 
(as demanded by the Bayesian framework), which will overestimate available 
knowledge by assuming all parameters are equally likely.  
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Freni and Mannina (2010) investigated the impact of assuming different 
amounts of prior information on storm water quality model parameter 
uncertainty, and concluded that using weak information from other studies to 
inform prior PDFs can lead to wrong estimations of uncertainty. The study 
also noted that as the model is ran against more data, the importance of prior 
hypothetical PDF assumptions are gradually reduced; the length of influence 
of the prior depends on the difference between the prior PDF and ‘true’ 
posterior distribution (Freni and Mannina 2010). Further, model performance 
can be sensitive to the size and type of data used for calibration (Dembele et 
al. 2010).  The use of conditioned posterior information for further application 
(e.g. validation) depends on the difference in driving conditions between 
calibration and validation stages, which alongside model sensitivity will 
determine the validity of the now prior information.  
 
Two key decisions governing the applicability of formal Bayesian approaches 
are the choice of an appropriate likelihood function and the choice of an error 
model, which will represent structural and input uncertainty. The basic 
assumptions made in formulating Equation 3.7 are only likely to hold in the 
simplest of cases; model residuals typically show complex structures 
involving non-stationarity, autocorrelation, heteroscedasticity, and non-
Gaussianity (Beven et al. 2008; Vrugt et al. 2009b). The validity of residual 
error assumptions should be tested using posterior diagnostic checks, 
including plots of residual error against output (e.g. discharge) magnitude, 
quantile-quantile plots for normality, and plots of auto-correlation against 
time lag (Engeland et al. 2005; Thyer et al. 2009; Yang et al. 2007). Although 
various error sources have attempted to be accounted for in UWS modelling, 
alongside parameter uncertainty (e.g.Willems 2008), few attempts have been 
made to evaluate the assumptions of formal likelihood functions.  
 
A key problem with posterior diagnostic checks is that the error model 
structure is typically calculated with residuals based on a single parameter 
vector, such as that which produces the maximum or modal likelihood 
estimation (Engeland et al. 2005; Yang et al. 2007). As pointed out by Beven et 
al (2008) and Schaefli et al (2007), this residual error is unlikely to apply 
everywhere in model space. Further, the mode of the posterior distribution 
will depend on the choice of the error model and the subsequent likelihood 
function. Beven et al (2008) proposed an iterative approach to constructing an 
error model by first correcting for Heteroscedasticity and then for 
autocorrelation. However, the fitted error structure cannot necessarily 
account for non-linear processing of input error (Beven et al. 2008), and there 
is no guarantee that it will hold for predictive purposes as the true nature of 
input and structural error are not known.  
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The above problems arise because the decisions governing the choice of 
likelihood function and error model are typically borne from a focus on 
parameter uncertainty that implicitly make key assumptions regarding the 
nature of other sources of error: 
 

 Observed system forcing (e.g. in rainfall) is assumed to be equal to the 
true system forcing (i.e. equating phenomenal with noumenal (Hall, 
2003) and ignoring aleatory and epistemic uncertainties in data). 

 The model is assumed to be a true representation of reality; i.e. there 
are no structural (epistemic) errors. 

 The observed system behaviour to evaluate model performance is also 
considered free from error. 

 
These assumptions, and the associated choice of a simple error model may 
lead to what has been termed over-conditioning (Beven 2006); that the model 
fits the data well, and that the likelihood function will be very peaked, as it is 
assumed that the optimal model is correct. When the above assumptions are 
made with a non-linear model, there is doubt over the adequacy of the 
assumed likelihood function, which because of the over-conditioning results 
in peaked likelihood functions, and inadequate sampling of parameter space. 
As noted recently, multiple local maxima may exist in parameter space, 
resulting in difficulties in adequately estimating model parameters (Yang et 
al. 2007). The result of choosing an inappropriate likelihood function, such as 
SLS can result in an underestimation of parameter uncertainty (Schoups and 
Vrugt 2010; Thyer et al. 2009).  
 
The lack of general theory of the information content of data, particularly 
when model structural error is significant, means there is no unambiguous 
answer for representing and disaggregating the effects of different sources of 
uncertainty (Beven et al. 2008). Two general approaches, one that remains 
with a formal Bayesian approach, and one that employs ‘pseudo’ Bayesian 
approaches (Section 3.2.4), have been employed in an attempt to overcome 
the problems outlined above. 
 

3.5.1 Multiple error sources and Bayesian Total Error Analysis (BATEA) 
 
Formal Bayesian approaches applied to better address all forms of 
uncertainty may be summed up by the philosophical standpoint of the 
Bayesian Total Error Analysis (BATEA), which was developed with the aim 
of explicitly representing each source of uncertainty affecting calibration and 
prediction (Kuczera et al. 2006). Although this is a difficult aim to achieve, a 
number of promising approaches have been utilised to overcome some of the 
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problems highlighted above, and represent all sources of error, either 
implicitly or explicitly. 
 
In the case where assumptions about the nature of errors are invalid, 
Heteroscedasticity and non-normality may be overcome using residual 
transformations, including logarithmic (Romanowicz et al. 1994) and Box-Cox 
transformation (Freni and Mannina 2010; Sakia 1992). However 
transformation methods do  not account well for heavy tailed residuals (Yang 
et al. 2007), and as argued by Shaefli et al (2007),  the modelling error may not 
have zero mean in the retransformed variable space, even though Gaussianity 
holds in the transformed output variable space. A mixture distribution 
approach has also been proposed, which with the addition of statistical 
parameters also inferred from the sampling procedure, uses a mixture of 
normal distributions to represent error structures at low-flow and high-flow 
periods (Schaefli et al. 2007). 
 
Autoregressive models may be employed in attempt to account for correlated 
errors (Beven and Freer 2001b; Romanowicz et al. 1994; Schoups and Vrugt 
2010; Vrugt et al. 2009b; Yang et al. 2007). For example Yang et al 2007 applied 
a time-varying autoregressive model, which alongside seasonal parameters, 
improved on traditional error assumptions (e.g. zero mean and constant 
variance) when subjected to posterior diagnostic tests. Schoups and Vrugt 
(2010) also applied an autoregressive time-series model, and instead of 
employing a statistical transformation to achieve Gausssianity of residuals, 
employed an explicit statistical model. Heteroscedasticity was achieved by 
modelling standard deviation as a linear function of output flow magnitude, 
and non-normality accounted for with additional skeweness and kurtosis 
parameters, which allowed the relaxation of Gaussianity (Schoups and Vrugt 
2010). The additional statistical parameters require determination alongside 
conventional model parameters during model calibration, however the added 
flexibility in employing Laplace distribution was more robust against outliers. 
 
Some of the above methods, although correcting for some of the error 
assumptions in parameter inference procedures, may be criticised for not 
attempting to explicitly account for different sources of error (rather, they aim 
to produce the correct statistical description of the data). As outlined in 
Section 2, rainfall errors are one of the key factors affecting model uncertainty 
in UWWS models. Rainfall errors have been accounted for using PDFs to 
account for event magnitude bias and aerial averaged rainfall (Willems 2001), 
and applied to individual storm events understand the effect of different 
sources of uncertainty of sewer water quality modelling (Willems 2008). 
Similar methods have been applied in the hydrological literature, including 
storm dependent rainfall multipliers (Kuczera et al. 2006; Thyer et al. 2009), 
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and daily multipliers, which have been found to yield more consistent 
parameter estimates, which are less likely to inadvertently account for 
structural errors compared to event multipliers, but come at increased 
computational cost (Thyer et al. 2009). In stormwater models systematic 
rainfall uncertainties have been shown to impact the model calibration 
process, and result in different optimal parameter sets depending on the 
rainfall error (Kleidorfer et al. 2009). Thyer et al (2009) also employed an error 
model to account for errors in the output stage-discharge relationship. 
Explicitly accounting for such errors has been found to increase parameter 
uncertainty (Thyer et al. 2009; Vrugt et al. 2005), emphasising the potential for 
over-conditioning if such sources of error are ignored. Similar approaches 
have also been applied to account for measurement error in sewer water 
quality modelling by removing the estimate measurement error from 
previous studies to obtain structural error (Willems 2008). Further, in WDN 
modelling measurement error in pressure measurements it typically 
accounted for with a standard deviation (Kapelan et al. 2003).  
 
Alongside input/output and measurement errors, structural errors have been 
dealt with explicitly by storm dependent perturbation of model parameters 
(Kuczera et al. 2006; Renard et al. 2010), in addition to some real time 
approaches (See section 3.3), and approaches that decompose the posterior 
uncertainty to reveal the remnant structural uncertainty (Willems 2008).  
However, when both input and structural errors are accounted for by latent 
variables, and only vague prior information on input errors is available, 
decomposition of input and structural errors becomes ill-posed, as respective 
latent variables will interact (Beven 2009; Renard et al. 2010; Thyer et al. 2009). 
The ultimate problem of many modelling applications rests in the inability to 
adequately define a structural error model. Where total uncertainty is of 
importance for the decision maker the implicit approach of Schoups and 
Vrugt (2010) that focuses on the correct statistical description of the data may 
be preferred.  
 

3.5.2 Multi-model approaches 
 
Two approaches to deal with model structural uncertainty are Bayesian 
Model Averaging (BMA) and the Multimodel Ensemble Method (MME). In 
BMA the posterior distribution of the prediction is given based on a weighted 
sum of the posteriors distributions from a number of different models (Duan 
et al. 2007; Zhang et al. 2009). The MME approach, which has been widely 
applied for weather and climate forecasting (Fowler and Ekstrom 2009; 
Manning et al. 2009; Tebaldi and Knutti 2007), and used in the IPCC report 
for projected climate change (IPCC 2001), samples from the output 
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distribution of several different models. Both methods are computationally 
demanding to apply, and although multiple models may compensate for 
errors in different structures, there is no guarantee that the range of chosen 
models will cover adequately the ‘true’ model (Liu and Gupta 2007). 
Although this is the case, applying multiple model realisations of the system 
can help identify key areas of system representation for specific application, 
and identify the tradeoffs between system representation and over-
parameterisation (Butts et al. 2004). 

3.6 Informal ‘Pseudo’ Bayesian approaches: Generalised Likelihood Uncertainty 
Estimation (GLUE) 
 
In the face of real modelling applications, where modelling input and 
structural model errors are poorly constrained, the statistical assumptions of 
formal Bayesian approaches may lead to over-conditioning of the likelihood 
surface. Rather than remaining within the formal Bayesian framework for 
dealing with this problem, the Generalised Likelihood Uncertainty 
Estimation (GLUE) procedure moved away from formal definitions of 
likelihood by recognising that many different models and parameter sets may 
give similar levels of performance (Beven and Binley 1992). This recognition 
of equifinality forms the basis of the GLUE methodology (Beven 2006). 
 
Methodologically, the GLUE method employs an informal likelihood 
measure to avoid over-conditioning (Smith et al. 2008a). Of these likelihood 
measures, the inverse error variance is often employed (Beven and Binley 
1992): 
 

(U,ܤ,଴ݔ,Z|ߠ)ܮ   = ቆ
(U,ܤ,଴ݔ,Z|ߠ)ܧ

݊ − 2
ቇ
ି்

                                                                         (3.8) 

 
where T is a user chosen parameter; if T = 0 then each simulation with have 
equal weight, and as ܶ → ∞, most weight is given to the best performing 
parameter set. The method to estimate model parameter and output 
uncertainty is as follows: 

 Specify the prior PDF for each model parameter. 
 Using a specific sampling scheme (Section 3.2.6), sample from the 

priors for each parameter, and for the parameter set compute the 
likelihood function (3.8).  

 Define a cut-off threshold to separate behavioural from non-
behavioural simulations (either using a specific likelihood value or a 
fixed percentage of the total number of simulations). 

 Normalize the likelihoods of the behavioural simulations to sum to 
unity. 
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 Sort the parameter sets (and associated probabilities) to create the PDF 
and CDF of model output prediction, and use these to generate 
uncertainty intervals. 

 
The GLUE methodology has seen wide application and development in the 
field of hydrology (Beven and Freer 2001a; Freer et al. 1996; Pappenberger et 
al. 2005; Pappenberger et al. 2007), and also related fields such as soil erosion 
(Brazier et al. 2000) and water quality (Smith et al. 2005). More recently the 
method has been applied within UWWS models to quantify uncertainty in 
sewer water quality models (Freni et al. 2009b; Lindblom et al. 2007; Mannina 
et al. 2006), urban runoff models (Thorndahl et al. 2008), input rainfall now-
casting (Thorndahl et al. 2010) and WWTP (Cosenza et al. 2010). Thorndahl et 
al. (2008) used the GLUE methodology to understand model uncertainty in 
the commercial MOUSE model when applied to the Frejlev urban catchment 
in Denmark; the methodology highlighted improved performance in MOUSE 
when applied with aerial weighted rainfall and also with a kinematic surface 
runoff model. Further, the relative insensitivity of model output to within 
sewer model parameters was also highlighted (Thorndahl et al. 2008). It 
should also be noted that the GLUE methodology has been applied with 
formal Bayesian error models (Beven and Freer 2001b; Romanowicz et al. 
1994). 
 
Three key, subjective decisions affect the performance of the GLUE 
methodology; first, the choice of likelihood function; second, the choice of T; 
and third, the choice of behavioural threshold. A number of studies have 
investigated the sensitivity of uncertainty assessment to these subjective 
choices. Increasing the number of parameter sets classed as behavioural has 
the effect of increasing the uncertainty bounds, and therefore increasing the 
percentage of observations bracketed by the error bounds (Beven et al. 2008; 
Freni et al. 2008; Jin et al. 2010; Li et al. 2010). Increasing T has the effect of 
reducing the width of the uncertainty bounds (Blasone et al. 2008; Freni et al. 
2009a; Stedinger et al. 2008). Freni et al (2009a), in application to sewer system 
models, found that using exponential likelihood functions increased the 
relative weight of the best simulations compared to the Nash- Sutcliffe 
performance measure, which similar to increasing the value of T may set a too 
restrictive condition for defining acceptable parameter sets. The relative 
sensitivity of model output and parameter error to these subjective choices 
will depend strongly on the specific model used in application. 
 
Accurate probabilistic forecasting requires that the uncertainty bounds have 
the appropriate statistical coverage (i.e. an appropriate number of 
observations fall inside the correct uncertainty bounds). A key limit of the 
informal GLUE methodology is that the uncertainty bounds will not 



 

Quantifying Uncertainty in Urban Water Systems (UWS) Modelling.   
© PREPARED - 44 - February 2011 

 

necessarily encompass a specific portion of the observations (Beven 2006). 
Although the correct statistical coverage can be achieved, this may often 
require calibration of the subjective choices highlighted above (Blasone et al. 
2008). This will have the effect of giving magnitude dependent uncertainty 
estimates (Stedinger et al. 2008), and not correctly account for error variance, 
particularly in validation. Studies have identified that GLUE can produce 
similar uncertainty bounds to formal Bayesian approaches (Jin et al. 2010; 
Vrugt et al. 2009b), which themselves may not provide the correct statistical 
coverage (Li et al. 2010). As the treatment of residual error (structural and 
input) in GLUE is left implicit, then the characteristics of the residual error for 
a particular parameter are also weighted; consistency in under-prediction 
during calibration is also likely to hold in prediction, and the set of 
behavioural models may also bracket the observations (Smith et al. 2008a).  
 
A criticism of GLUE is that it does not attempt to separate out different forms 
of model uncertainty. In a similar way that some formal methods have sought 
to represent different forms of uncertainty (Section 3.2.3), the Limits of 
Acceptability approach has been developed as an extension of GLUE (Beven 
2006). Models are treated as members of the behavioural model set if they lie 
within the limits of acceptability, which may be defined for each output 
observation accounting for calibration data measurement uncertainty (Liu et 
al. 2009). Accounting for errors on a measurement basis, and using 
information per observation to evaluate consistent over- or under-prediction 
of observed results, allows for better evaluation of non-stationary error that 
may facilitate diagnosing structural or input errors.  
 

3.7 Sensitivity Analysis 
 
Sensitivity analysis (SA) can form a key model development stage for 
dealing with parameter uncertainty, particularly prior to real-time modelling 
approaches that often do not explicitly consider parameter uncertainty 
(Section 4). SA methods may be broadly split into local, one-factor-at-a-time 
(OAT) methods that vary one parameter at a time to evaluate output 
sensitivity (Arabi et al. 2007), and global approaches such as the elementary 
effects method (Campolongo et al. 2007), and MCS sampling approaches 
(Helton et al. 2006b). Global approaches, such as ANOVA based Sobol 
methods (Saltelli et al. 2004), although computationally more expensive, are 
better able to identify parameter interactions; OAT methods are considered 
unacceptable in that they do not allow for the co-operative effect of different 
uncertain parameters on model output (Saltelli et al. 2006). 
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Identifying insensitive (unimportant) parameters (e.g. Freni et al. 2011) may 
reduce the dimensions of the parameter hypercube, and therefore 
unnecessary MCS sampling during subsequent application (e.g. in real time). 
SA may be particularly powerful in identifying key, sensitive model 
parameters (e.g. McCarthy et al. 2010) and locations of sensitive system states 
(Kapelan et al. 2007) that may form the focus of data collection when 
resources are limited (e.g. Sensor location optimisation; PREPARED Work 
Package 3.5). Furthermore SA can reveal parameter interactions between 
different model components (e.g. between catchment and in the sewer 
processes; Freni et al. 2011) that can guide the location of further data 
collection (e.g. intermediate catchment locations such as WWTP effluent 
point). 
 

3.8 Limitations of Probabilistic approaches 
 
An extensive discussion of the application of formal and informal Bayesian 
approaches to deal with different forms of model uncertainty is present in the 
research literature (Bargaoui and Chebbi 2009; Beven 2006; Beven et al. 2008; 
Blasone et al. 2008; Mantovan and Todini 2006; Mantovan et al. 2007; Renard 
et al. 2010). It is evident that what both informal and formal methods have in 
common is the presence of subjective assumptions regarding choices made 
during modelling inference, and what both methods require are techniques 
for better defining and representing input and structural uncertainty. 
 
Both formal and informal Bayesian approaches seek to represent information 
probabilistically. The probabilistic framework requires the selection of a 
uniform distribution in the face of ignorance about the probability of an event 
(or parameter), which is unlikely to be justified by evidence. Such a 
representation conflates indeterminancy with equiprobability, which when 
propagated through a model will result in a single posterior probability 
distribution, which may be bias compared to the original information 
provided (Dubois 2010; Ferson and Ginzburg 1996). Bayesian approaches 
may be defended in that although prior assumptions are initially uncertain, 
confronting models with new data results in sequential updating of prior 
information, until initial prior assumptions are no longer influential (Freni 
and Mannina 2010). However, such a distribution may remain a function of 
both aleatory and epistemic uncertainty unless the influence of structural and 
data errors on the residual model errors are correctly accounted. Posterior 
separation of sources of uncertainty remains an active area of research 
(Renard et al. 2010; Willems 2008). 
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A number of authors have argued that whilst natural variability (aleatory) is 
best represented using probability distributions, imprecise information 
(epistemic uncertainty) may be best represented using other methods 
(Guyonnet et al. 2003; Helton et al. 2004). For example, when aleatory and 
epistemic uncertainty are both present, a family or interval of probability 
distributions may be employed (Merz and Thieken 2005). However, sampling 
may come at significant computational cost when the inner (aleatory) and 
outer (epistemic) distributions need to be sampled (Sun 2010).  A number of 
alternatives approaches, which rely on reworking Kolmogorov’s axioms of 
probability to encompass incomplete information, have also been developed 
to deal with uncertainty (Dubois 2010; Hall 2003). 

3.9 Possibility theory and Fuzzy approaches 
 
In contrast to probabilistic representation of an uncertain variable, according 
to possibility theory the available knowledge about a variable can be 
represented with a fuzzy number (Zadeh 1978), which is expressed by a 
membership function (µ). The value of µ, which lies between zero and one, 
expresses the possibility that a certain variable X takes on a specific value x 
(Figure 12.). The representation of possibility deviates from a probabilistic 
representation of uncertainty through a weakening of the additivity axiom 
(Hall 2003); the integral under the function need not sum to unity. Although 
the fuzzy number does not provide as much information as a probability 
distribution, it is more informative than an interval as subjective information 
can be incorporated to set the pivot points ((i.e. the shape of the membership 
function; Revelli and Ridolfi 2002). Thus, subjective information may be 
mathematised for model propagation. 
 

 
Figure 12. Fuzzy membership function and illustration of the α-cut between a 
and b (Guyonnet et al. 2003). 
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The propagation of uncertainty, expressed by fuzzy numbers, is an extension 
of interval analysis (Guyonnet et al. 2003): first, a threshold α-cut is selected, 
which generates an interval [a,b]; this interval is then used in the 
mathematical function to obtain a posterior interval; other α-cuts are sampled 
and used to obtain posterior intervals, from which the posterior possibility 
distribution is recovered. This methodology only applies when the function is 
monotonic, which does not hold for many WDN models which display strong 
nonlinearity. In such cases an optimisation procedure will be required to 
sample the interval [a,b] to derive the minimum and maximum values of X 
for each α-cut (Branisavljevic et al. 2009). 
 
Revelli and Ridolfi (2002) used fuzzy membership functions to describe pipe 
roughness parameter uncertainty due to material ageing, and employed a 
Newton-type iterative procedure to solve a steady-state water distribution 
network problem. Small uncertainties in pipe age, represented by fuzzy 
membership functions translated into large uncertainties in discharge and 
head in the network, which increased when demand uncertainty was also 
represented (Revelli and Ridolfi 2002). The effect of demand uncertainty has 
also been investigated with Fuzzy representation using input flow as a global 
constraint, where GA’s are used to solve the optimisation problem 
(Branisavljevic et al. 2009). Fuzzy membership functions have also been 
applied to represent rainfall uncertainty in rainfall-runoff models (Maskey et 
al. 2004), uncertain emissions scenarios in low dimensional climate models 
(Hall et al. 2007), and used in real-time data anomaly (Branisavljevic et al. In 
Press). Given computational execution times for optimisation solvers, 
particularly when applying GA’s with global constraints (Branisavljevic et al. 
2009), the fuzzy methods considered may not be applicable to understand 
uncertainty in complex networks involving many nodes. In such cases a 
linearization of the hydraulic solver may be required for Fuzzy application 
(Xu 2003), which comes at a cost of introducing structural uncertainty by not 
fully representing the non-linear system. 
 
Parameters represented by fuzzy membership functions may be combined 
with parameters represented by PDF’s, where information is available to 
constrain the latter. A hybrid approach has been developed in order to 
propagate both forms of uncertainty representation through models by 
nesting the α-cut sampling procedure described above within a Monte Carlo 
Sampling procedure of the parameters represented for PDFs (Guyonnet et al. 
2003). The result is an ensemble of posterior fuzzy membership functions, 
each conditioned on a parameter set of the parameters represented 
probabilistically. Therefore initially probabilistic information becomes 
possibilistic, a distinction that should be clarified should the method be 
applied to inform the decision making process (Ross et al. 2002). 
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Fuzzy methods have also been applied for optimal looped WDN design with 
GA optimisation, by replacing strict (or ‘crisp’) criteria for GA penalties with 
fuzzy membership functions describing performance quality criteria 
(Vamvakeridou-Lyroudia et al. 2005). The method has been applied for both 
single- and multi-objective optimisation as a tool to facilitate in decision 
support (Vamvakeridou-Lyroudia et al. 2006; Vamvakeridou-Lyroudia et al. 
2005; Xu and Goulter 1999). 
 
 
 

3.10 Evidence Theory 
 
Evidence theory, also referred to as Dempster-Shafer theory (Hall et al. 2007), 
is the simplest method of combining probability and possibility theory into 
the same theoretical framework (Hall 2003). Evidence theory may be viewed 
as an extension of probability theory in that the basic probability assignment 
(BPA), m() (as opposed to p() in probability theory) is assigned to sets as 
opposed to mutually exclusive singletons. More formally let Θ represent a set 
of elements (n), each representing a discrete value of a parameter θ (Luo and 
Caselton 1997): 
 
Θ = ,ଵߠ) …  ௡)                                                                                                                     (3.9)ߠ,
 
Evidence theory allows the assignment of probability mass (BPA) to unions of 
subsets of Θ, such as (θ1, θ2) and also to individual elements of the subset (θ1). 
All subsets (A) are elements of the power set P(θ). Mass is assigned to a given 
subset (A), in the interval between 0 and 1, and the sum of BPA’s for all 
subsets of the power set is 1: 
 

෍ (ܣ)݉ = 1                                                                                                               (3.10)
஺∈௉(ఏ)

 

 
Mass assigned to a subset does not say anything about the way in which mass 
is assigned to singletons or sets contained within A. When mass is only 
assigned to singletons of Θ evidence theory collapses to probability theory. 
Unlike probability theory where p() defines the probabilities which are 
fundamental measures of likelihood, in evidence theory two measures of 
likelihood for a subset, belief Bel(A) and plausibility Pl(A) are obtained from 
m(A) (Helton et al. 2004): 
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(ܣ)݈݁ܤ = ෍݉(ܤ)                                                                                                        (3.11)
஻⊆஺

 

 

(ܣ)݈ܲ = ෍ (3.12)                                                                                                     (ܤ)݉
஻∩஺ஷఝ

 

 
where φ is the null set, and B is a subset. Therefore belief is the sum of all the 
basic probability assignments of all proper subsets of A, when B ⊆ A. 
Plausibility is the sum of all the basic probability assignments of the subsets 
that intersect  the set of interest (B ∩ A ≠ φ). The interval between belief and 
plausibility represents the range in which the true probability may lie; 
therefore when belief equals plausibility the probability is uniquely 
determined. 
 
Evidence theory has been applied to understand and quantify uncertainty 
associated with contaminant intrusion in water distribution networks (Sadiq 
et al. 2006), and to combine different sources of uncertain information for pipe 
deterioration assessment (Bai et al. 2008). Bicik et al (In Press) recently applied 
evidence theory to combine different sources of information. Combining 
information from a pipe burst detection model, a hydraulic model and a 
customer contacts model with evidence theory was able to account for 
uncertainty in the credibility of different evidence sources, and aid in locating 
pipe bursts (Bicik et al. In Press). Hall (2003) also demonstrated the use of 
evidence theory to propagate uncertain information through a simple coastal 
overtopping problem. Evidence theory has seen relatively little application 
for propagating uncertain information through UWS models, reflecting both 
the dominance of other probabilistic paradigms and the added computational 
expense (Helton et al. 2007), particularly when the number of elements of a 
set is high. Evidence theory has seen wider application for risk assessment 
(Helton et al. 2006a); a situation where subjective, limited and uncertain data 
regarding the possibility of future events is better represented with evidence 
theory. 
 

3.11 Monte Carlo Sampling (MCS) procedures 
 
The procedures considered in Section 3.2 for representing uncertainty, 
notably Bayesian type probabilistic procedures, require methods to propagate 
the uncertainty in input and parameter values through the numerical model. 
In special cases where an analytical solution is present, this integration is 
relatively straightforward. However, this is rarely the case, and numerical 
sampling procedures are required to sample parameters sets in order to 
construct posterior parameter and output distributions. 
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The simplest method for parameter sampling is random sampling, also 
termed Monte Carlo Sampling (MCS) where parameters are randomly 
drawn from the prior distributions, and used to construct the posterior 
density function (Freni et al. 2009b). MCS procedures have been applied to 
evaluate the modelling performance and uncertainty quantification of system 
linearisation, and FOSM (Bargiela and Hainsworth 1989; Kang and Lansey 
2009).  
 
A key criticism of MCS procedures is the computational time required to 
adequately sample parameter space, which for high dimensional problems 
will be considerable. Random sampling provides no guarantee that higher 
likelihood parameter space is adequately sampled, not least due to the 
difficult of identifying a priori the required number of samples. In methods 
applying MCS procedures to UWS models, where often less than 1000 
simulations are conducted, little evidence is provided that these samples 
provide adequate sampling of parameter space (e.g. Freni et al. 2008; Willems 
2008). Methods to test for convergence of the posterior distribution include 
Kolmogorov-Smirnov, Fluctuation, Geweke’s Zg test, Kuiper test and 
Gelman-Rubin (El Adlouni et al. 2006; Goldman et al. 2008; Pappenberger et 
al. 2005), and should be conducted to provide confidence in sensitivity 
analysis and  uncertainty bounds produced.  
 

3.11.1 Latin Hypercube Sampling (LHS) 
 
Latin hypercube sampling (LHS) provides a more efficient and stratified 
means of sampling parameter space; each parameter range is divided into n 
disjoint intervals of equal probability, and a random sample selected from 
each interval. This sample is joined with one interval sample from all other 
parameter ranges without replacement to generate a parameter set (Helton 
and Davis 2003). LHS methods have been applied to parameter sampling 
using evidence theory (Helton et al. 2006a), and in probabilistic methods 
(Blasone et al. 2008; Manache and Melching 2004). Whilst LHS methods 
improve over MCS procedures in that they guarantee more even sampling of 
parameter space, they also may not adequately sample the high probability 
density (HPD) region of parameter space (Blasone et al. 2008). A key 
limitation of the sampling methods outlined above is that they do not use 
information from the model sampling procedure at each run to better sample 
the HPD region of parameter space. More efficient methods are required in 
complex UWS models to sample the HPD region given potential model 
complexity, particularly with integrated UWWS models.  
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3.11.2 Markov Chain Monte Carlo (MCMC) Methods 
 
A family of sampling methods known as Markov Chain Monte Carlo 
methods (MC2 or MCMC) have been developed and applied to modelling 
problems to sample more efficiently model parameter space and identify well 
performing model parameter sets. The Metropolis-Hastings (MH) algorithm 
was one of the first and most general class of MCMC algorithms to be applied 
in a formal Bayesian framework (Kuczera and Parent 1998; Schaefli et al. 
2007), and has recently been applied to storm water modelling (Dotto et al. 
2009; Kleidorfer et al. 2009; McCarthy et al. 2010), and water demand 
estimation at the household level (Arandia-Perez et al. 2010). The method, 
which may be initiated with multiple chains, starts a chain at a given point in 
parameter space and randomly samples from a multivariate jump probability 
distribution. The ratio of the probability of the current parameter set (j1) to 
that derived from the previous jump (j0) is calculated, and compared to a 
random sample from a uniform distribution over the interval [0, 1] to 
evaluate whether the chain moves to the new location in hyper-parameter 
space or remains at (j0) to initiate the next jump (Kuczera and Parent 1998). 
The method is therefore more likely to move to samples of higher probability, 
but will also sample lower probability regions. Although the method was 
shown to improve over importance sampling in finding the HPD region 
(Kuczera and Parent 1998), a poor choice of proposal distribution can lead to 
slow convergence rates due to the lack of prior information on the location of 
the HPD region in parameter space (Vrugt et al. 2003). 
 
In response to the limitations of early MCMC approaches an active area of 
research has been in developing more efficient methods for adequately 
sample the (multiple) HPD regions of model parameter space. Advances over 
the MH algorithm include the SCHEM-UA algorithm, a development of the 
SCE-UA algorithm (Duan et al. 1992), which although recently applied to a 
WDN calibration problem (Alvisi and Franchini 2010) and also to a multi-
objective optimisation problem (Madsen 2000),  has a tendency to collapse to 
a single HPD region (Vrugt et al. 2003). The SCHEM-UA algorithm employs 
multiple parallel chains to enhance the search of multiple HPD regions of 
parameter space, and exchanges information between the ranked and 
grouped proposal sample points of each chain (based on decreasing order of 
posterior probability) to inform the proposal distribution of each candidate 
point in each group (Vrugt et al. 2003). The method was recently applied in a 
water distribution network model calibration problem (Kapelan et al. 2007), 
and also to a water consumption prediction model (Cutore et al. 2008). 
Further advances in the application include the DREAM (Vrugt et al. 2009b) 
and DREAM-ZS algorithm (Schoups and Vrugt 2010; Vrugt et al. 2009a), 
which samples from past states to avoid a large number of parallel chains. 
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The DREAM-ZS algorithm includes a snooker updater which generates 
jumps beyond parallel direction updates (ter Braak and Vrugt 2008).  
 
Although the advances in MCMC sampling procedures are primarily 
motivated by the need to efficiently sample parameter space, a lack or 
slowness of convergence may be used to identify and understand ill-posed 
problems. For example, a lack of MCMC convergence may be indicative of an 
ill-posed problem when there are insufficient data available to constrain 
model structural and data errors (Renard et al. 2010). A number of the 
advanced methods discussed above may be appropriate for further 
application in UWS modelling, and represent a key computational 
consideration governing the ability to adequately characterise posterior and 
parameter uncertainty. 
 

3.12 Conclusions 
 
A range of methods for quantifying and reducing uncertainty in UWS are 
available, including a number of methods that have yet to be applied fully in 
this context, yet have made advances in moving beyond primarily dealing 
with parameter uncertainty to better accounting for a measurement and 
structural uncertainty. Methods based in probability theory may be best 
applied where data availability is good; within this framework a number of 
approaches for dealing with different forms of uncertainty have been 
developed. Where data availability is poorer and restricted to expert opinion, 
and where there is uncertainty regarding the possibility of future events, 
Possibility theory and Evidence theory may form more appropriate 
frameworks for representing uncertainty and informing decision making. 
 
Model development should be seen as iterative with data collection, and 
should not be seen as an end point for purely predictive purposes. As such, 
many of the methods outlined above may be used for model uncertainty 
reduction by allowing one to target where network monitoring can be applied 
to constrain structural uncertainty on limited resources, as is the aim of 
PREPARED work package 3.5. Further, many of the calibration and 
sensitivity analysis methods considered, although not directly amenable to 
real-time simulation due to computational constraints, may form a central 
role in application by constrain parameter uncertainty that has not 
traditionally been considered in real-time modelling. 
 
Of the methods in Section 3, it is difficult to specify a priori whether a 
particular method will be applicable within the context of UWS modelling; 
however, their success in other related scientific fields (most notably in 
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hydrology), supports the application of some of the methods for uncertainty 
quantification within Work Package 3.6. Although the methods presented 
here, as well as the techniques and methodologies that will be implemented 
in Task 3.6.2 can be considered as generic, the final selection of the 
methodologies to be applied depends also on the specific requirements of the 
PREPARED cities selected for demonstration. 
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4 Real-time uncertainty quantification and 
reduction 

4.1 Introduction 
 
Real-time control (RTC) of UWS, both for Water Distribution and Sewerage 
Management, has received increased attention in recent years given the 
demands for improved system performance to meet consumer and regulatory 
needs, often at reduced cost (Jamieson et al. 2007). Such control is required in 
WDN to reduce pumping costs (e.g. by filling tanks in low tariff periods) 
whilst maintain adequate system pressure to meet fluctuating consumer 
demands (Davidson and Bouchart 2006). Higher system pressures than 
necessary are normally maintained due to current control limitations, which 
leads to higher leakage losses from the system (Jamieson et al. 2007). Further, 
pump-scheduling for system control typically takes the form of lapsed-time 
control in response to average demand curves over a 24 hour period (Rao et 
al. 2007) , which does not take full advantage of on-line monitoring data.  
 
In UWWS the volume and quality of CSO discharge needs to be minimised 
by optimally using regulatory devises (e.g. gates, weirs, pumps and treatment 
works) to manage the flux of sewerage within the wastewater system, 
through for example, inline storage (Darsono and Labadie 2007). There are 
three basic approaches for RTC (Vanrolleghem et al. 2005): volume-based, 
pollution-based and emission based. Although volume-based approaches do 
not necessarily minimise pollution impact (Lau et al. 2002; Rauch and 
Harremoes 1999), a relative dearth of data means volume-based approaches 
are often the most practical approach. It has been argued that in current 
systems much of this management is limited to reactive control (Pleau et al. 
2005), without demonstrating the full potential of on-line monitoring data 
such as that provided by Supervisory Control And Data Acquisition 
(SCADA) systems (Kang and Lansey 2009).  
 
State estimation (SE) is defined by as the process of combining field 
measurements and numerical models to gain a global system view of state 
variables (e.g. pressure) that are not directly measured (Bargiela and 
Hainsworth 1989). Real-time modelling is required to optimise the real-time 
control of UWS by providing the ability to predict state variables that are not 
directly measured due to the difficulty and cost of monitoring extensively in 
UWS. Further, SE is required to overcome reactive management to existing 
and often sparse information on system state by making predictions to 
anticipate future requirements (Jamieson et al. 2007). Although advances in 
computational power and the development of integrated models facilitates 
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the potential take-up of SE approaches in RTC, methods are required  to deal 
with uncertainties in both data and models, and to deal with the 
computational issues associated with predicting in real-time to optimise 
system control. Section 4 will briefly outline existing approaches for dealing 
with uncertainties in real-time modelling of UWS. The methods considered in 
Section 4 are those considered most applicable for addressing Task 3.6.3 (A 
scientific report on data assimilation techniques for improving the accuracy of 
model predictions), and shall be reviewed more fully in Deliverable 3.6.2 due 
in month 18. 
 

4.2 Outline of Real-time methods 
 
Artificial Neural Networks (ANN) are part of a class of data driven 
modelling approaches that seek to make the correct mapping from input to 
output data (Jeong and Kim 2005). Such model structures, which implicitly 
account for model structural errors during calibration are applicable to real-
time modelling due to their fast execution times (Rao and Salomons 2007), 
and have been applied in ensemble to reproduce prediction intervals 
(Shrestha et al. 2009), consumption prediction with uncertainty derived from 
SCEM-UA (Cutore et al. 2008), and also for real-time detection of pipe burst 
events (Romano et al. 2010) 
 
The Kalman filter (KF) is a sequential filter method that updates model 
system state sequentially based on the relative magnitude of state error and 
measurement error. The method is best applied to linear estimation problems  
(Todini 1999) and performs poorly in non-linear problems (Kang and Lansey 
2009). The Extended Kalman Filter (EKF) was developed to work better in 
cases of system non-linearity, and has been applied to real time demand 
estimation in WDN (Shang et al. 2006). Further advances include The 
Ensemble Kalman Filter (EnKF), introduced by Evensen (1994), was 
developed to overcome some of the linearity problems associated with the 
EKF, by propagating an ensemble (n) of model states derived from Monte 
Carlo perturbations of input state. Though computationally intensive, the 
method has been most widely applied in related scientific fields, including 
hydrology  (Clark et al. 2008; Moradkhani et al. 2005b; Neal et al. 2007; Xie 
and Zhang 2010).  
 
Sequential Monte Carlo Sampling (Particle Filtering) is a similar estimation 
approach to Kalman filtering, which propagates multiple realisations 
(particles) representing a system model forward in time, and uses system 
observations to update weights associated with the probability of each 
particle. The particles are used to construct a posterior density function of 
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model predictions (Arulampalam et al. 2002; van Leeuwen 2009). The Particle 
filtering method has been applied in climatology, meteorology and 
hydrological modelling (Moradkhani et al. 2005a; Pham 2001; Salamon and 
Feyen 2009; Smith et al. 2008b; van Leeuwen 2009; Vossepoel and van 
Leeuwen 2007), and has been shown to outperform EnKF, but at increased 
computational cost (Pham 2001). 
 
Variational Data Assimilation (VDA) is a method unlike the family of KF 
and PF real-time methods in that VDA operates over a time-series of 
observation points, and is a method widely applied in weather forecasting (Li 
and Navon 2001). The method is applied by minimising of a cost function (J) 
that measures the weighted sum of squares between the background state 
and the observations over a given time interval (Ide et al. 1997) Whilst VDA 
methods are more suitable to complex problems as they are less demanding 
computationally, they do not provide an estimate of the predictive 
uncertainty. A combined approach where 4DVAR is coupled with EnKF was 
performed which was shown to outperform both methods separately, but at a 
large computational cost (Hansen and Smith 2001).  
 
Joint State and Parameter Estimation, unlike the majority of real time 
approaches, attempts to consider parameter uncertainty alongside state 
uncertainty during model application (Brdys and Chen 1995) . These methods 
may be broadly divided into approaches that apply DA over a time-series 
used for calibration (static parameters), such as Vrugt et al. (2005) who 
coupled the SCEM-UA algorithm for parameter estimation with the EnKF, 
and Dual estimation where both parameters and model states are considered 
time-varying  (Brdys and Chen 1994; Brdys and Chen 1995; Moradkhani et al. 
2005a; Moradkhani et al. 2005b; Salamon and Feyen 2009).  
 

4.3 Conclusions 
 
A number of real-time modelling approaches for quantifying and reducing 
uncertainty have been outlined in Section 4. Extensive application in related 
scientific disciplines, including meteorology, climatology and hydrology, 
suggests there is strong potential for applying such methods in the context of 
Urban Water Systems modelling. As with some of the calibration approaches 
discussed in Section 3, the methods will also require information to define 
input data (e.g. rainfall) and output data (e.g. pertaining to system states or 
sewer CSO) uncertainty, which may be difficult to define. Improved rainfall 
monitoring and sensor placement/performance are other areas to be 
addressed in PREPARED work package 3 that will facilitate the application of 
the aforementioned methods for dealing with uncertainty.  
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5 Conclusions 

This report fulfils the requirements of Deliverable 3.6.1 within work package 
3.6 of the PREPARED Enabling change project (EC Seventh Framework 
Programme Theme 6), and has evaluated existing methods applied in a 
number of related fields for quantifying and reducing uncertainty in models, 
that may be applied in Urban Water Systems. Numerical models may be 
applied to address one of the key aims of the PREPARED project, and 
optimise the use of existing water supply and sanitation systems. However, 
such modelling approaches must consider inherent system uncertainty, 
which as reviewed in Section 2, is both aleatory and epistemic in nature, and 
affects a range of model components in both Water Distribution Networks 
and Urban Waste Water Systems. 
 
A range of techniques for quantifying and reducing uncertainty have been 
developed; the most widely applied and developed approaches have 
focussed on parameter uncertainty, including parameter optimisation 
procedures, and formal and informal (GLUE) probabilistic approaches. These 
methods may be best applied where data availability for model calibration 
and evaluation are good. Recent advances, including the Total Error Analysis 
and implicit uncertainty methods, have helped to move beyond a focus on 
model parameter uncertainty within probabilistic approaches towards also 
accounting for input uncertainty, model structural uncertainty, and output 
(evaluation) data uncertainty. Such recent advances also require data to 
constrain and understand the effect of different sources of uncertainty on 
model performance.  
 
Where data availability is poorer, restricted to expert opinion, and where 
there is uncertainty regarding the possibility of future events, Possibility 
theory and Evidence theory may form more appropriate frameworks for 
representing uncertainty and informing decision making. Evidence theory 
forms a more appropriate framework for combining different sources and 
types of information to reduce system uncertainty. 
 
Model development may, and should be considered as an iterative process 
alongside data collection. As such, many of the methods outlined in Section 3, 
notably sensitivity analysis methods, may be applied to reduce model 
uncertainty by informing where network monitoring should take place to 
constrain model parameter, and structural uncertainty. Application of such 
methods is particularly important when resources to provide sufficient 
distributed system monitoring are limited. Therefore some of the methods 
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outlines in Section 3 may be suitable to address the aims of PREPARED work 
package 3.5. 
 
A range of real-time approaches have been briefly introduced in Section 4, 
which given their extensive application in related scientific disciplines, 
including meteorology, climatology and hydrology, suggests there is strong 
potential for applying such methods in the context of Urban Water Systems 
modelling. Such methods may also be applied successfully when coupled 
with the calibration methods considered in Section 3 for joint state and 
parameter estimation. The application of real-time approaches is constrained 
by the availability of real-time data for application, and the time available to 
make computations to provide useful system forecasts. These issues will be 
reviewed more fully in Deliverable 3.6.2, in the context of the methods 
outlined in Section 4, which are considered most applicable for addressing 
Task 3.6.3.  
 
Although the methods presented here, as well as the techniques and 
methodologies that will be implemented in Task 3.6.2 can be considered as 
generic, the final selection of the methodologies to be applied depends also on 
the specific requirements of the PREPARED cities selected for demonstration. 
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7 Appendix A: Tabular Classification of Uncertainty Methodologies 

Reference Sampling/ 
Optimisation 
Method 

Parameter 
Uncertainty 

Structural 
Uncertainty 

Input/Data 
Uncertainty 

Output 
Uncertainty 

State 
Uncertainty 

Notes/Assumptions 

Calibration Techniques 
Optimisation techniques (Savic et al. 2009) 
(Savic et al. 2009) 
review paper 

 GA; GN; GB; 
SA 

Identify optimal 
parameter set. 

- - Minimised - Reduction of parameter uncertainty. 
No quantification of uncertainty. 

FOSM  
(Kang and Lansey 
2009; Lansey et al. 
2001) 
 

- Mean and 
Variance 

- - Mean and 
Variance 

- Assumes linear approximation of 
model function and Gaussianity, and 
requires assumed posterior error 
model. 

Formal Bayesian Approaches  
(Kapelan et al. 
2007) 

SCEM-UA PPDF EDF EDF PPDF - Assumed EDF error model. 

(Freni and 
Mannina 2010) 

MCS PPDF ND ND PPDF; PB - Assumed ND error model; Box-Cox 
transformation. 

(Schaefli et al. 
2007) 

M-H MCMC PPDF NMD NMD PB - AR model; NMD parameters 
calibrated; PD checks. 

(Yang et al. 2007) M-H MCMC PPDF ND ND PB - Assumed ND error model; Box-Cox 
transformation; AR Model; PD checks; 
calibrated error parameters. 

(Willems 2008) MCS Separate 
Calibration 

Inferred from 
VD 

ERM Total PB. - Parameters inferred separately from 
structural and input error. 

(Schoups and 
Vrugt 2010) 

DREAM-ZS PPDF SEP; BF; SD SEP; BF; SD PB - AR model; SD, BF and SEP 
parameters calibrated as function of 
flow magnitude and account 
implicitly for all errors; PD checks. 
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(Thyer et al. 2009) MCMC PPDF Not explicit DRM; ERM; 
HDM for 
output error 

Parameter PB; 
Total PB. 

- PD checks.  

(Renard et al. 
2010) 

MCMC  SP DRM; HDM 
for output 
error. 

Total PB. - PD checks. Difficulty of separating 
sources of error (input from 
structural) without sufficient prior 
information. 

(Zhang et al. 2009) GA  Identify optimal 
parameter set. 

BMA - BMA 
prediction 
bounds. 

- Assumes that different models cover 
all Structural error; no parameter 
uncertainty. 

Informal ‘Pseudo’ Bayesian Approaches 
(Thorndahl et al. 
2008) 

MCS PPDF Implicit in 
IEDF 

- PB. - IEDF likelihood for parameter 
uncertainty; assumed likelihood 
function, behavioural threshold. 

(Liu et al. 2009) MCS PPDF Implicit  Implicit 
Input; Output 
RCEB. 

PB - Structural and Input error inferred 
from non-stationary output; 
likelihood based on output RCEB.  

Possibility Theory and Fuzzy Approaches 
(Revelli and 
Ridolfi 2002) 

GN search of 
each α-cut 

FMF - - FMF - Output possibility distribution based 
on parameter uncertainty only. 

(Branisavljevic et 
al. 2009) 

GA search of 
each α-cut 

FMF - - FMF - Output possibility distribution based 
on parameter uncertainty only. 

Evidence Theory  
(Sadiq et al. 2006) DS BPA - - - - No formal model, but combination of 

evidence to produce Belief and 
Plausibility functions. 

GA, genetic algorithm; GN, Gauss-Newton technique; GB, Gradient-Based optimisation; SA, Simulated Annealing; FOSM, First-Order Second-Moment; SCEM-UA, 
Shuffled Complex Evolution Metropolis algorithm; PPDF, Posterior Probability Distribution Function; ND, Normal Distribution; EDF, exponential power density 
function; MCS, Monte Carlo Simulation; M-H, Metropolis-Hastings; MCMC, Markov Chain Monte Carlo; NMD, Normal Mixture Distribution; AR, Autoregressive 
Model; PD, Posterior Diagnostics; PB, Prediction Bounds; DREAM-ZS, DiffeRential Evolution Adaptive Metropolis Algorithm; SEP, Skewed Exponential Power 
Density; BF, Bias Parameter; SD, standard deviation; DRM, Daily Rainfall Multiplier; ERM, Event Rainfall Multiplier; HDM, Heteroscedastic Discharge; SP, Stochastic 
Parameters; CL, Confidence Limits; VD, Variance Decomposition; BMA, Bayesian Model Averaging; IEDF, Informal Exponential Density Function;  RCEB, Rating 
Curve Error Bounds; FMF, Fuzzy Membership Function; DS, Dempster-Shafer rules of combination; BPA, Basic Probability Assignmnet. 
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8 Appendix B: Glossary of Terms 

A glossary of terms has been included to facilitate understanding of the 
relevant report sections (The Glossary has been modified from Goulsby and 
Samuels 2005). 
 
Accuracy - closeness to reality. 
Adaptive capacity - Is the ability to plan, prepare for, facilitate, and 
implement adaptation options. Factors that determine cities’ adaptive 
capacity include economic wealth, technology and infrastructure, knowledge 
and skills, the nature of its institutions, its commitment to equity, and its 
social capital. 
Adaptive Strategy – Method for optimising/expanding existing systems to 
reduce risk and vulnerability to change (e.g. climate change). 
Aims - The objectives of groups/individuals/organisations involved with a 
project. The aims are taken to include ethical and aesthetic considerations. 
Aleatory uncertainty – see Natural Variability. 
Basin (river) (see catchment area) - the area from which water runs off to a 
given river. 
Calibration – see Calibration parameters. 
Catchment area - the area from which water runs off to a river. 
Bias - The disposition to distort the significance of the various pieces of 
information that have to be used. 
Characterisation - The process of expressing the observed/predicted 
behaviour of a system and its components for optimal use in decision making. 
Climate Change – changes in weather over > 30 year time-periods, notably in 
response to modern anthropogenic influence. 
Combined Sewer Overflow (CSO) – Overflow discharge from combined 
sewer systems that bypasses the Wastewater Treatment Plant and enters 
directly into the receiving water body. CSO discharge typically occurs during 
rainfall events. 
Conditional probability - The likelihood of occurrence of an event given the 
prior occurrence of another event. 
Confidence interval - A measure of the degree of (un)certainty of an estimate, 
usually presented as a percentage. For example, a confidence level of 95% 
applied to an upper and lower bound of an estimate indicates there is a 95% 
chance the estimate lies between the specified bounds. Confidence limits can 
be calculated for some forms of uncertainty (see knowledge uncertainty), or 
estimated by an expert (see judgement). 
Consequence - An impact such as economic, social or environmental 
damage/improvement that may result from a flood or UWS failure. May be 
expressed quantitatively (e.g. monetary value), by category (e.g. High, 
Medium, Low) or descriptively. 
Coping capacity - The means by which people or organisations use available 
resources and abilities to face adverse consequences that could lead to a 
disaster. 
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Correlation - Between two random variables, the correlation is a measure of 
the extent to which a change in one tends to correspond to a change in the 
other. One measure of linear dependence is the correlation coefficient p. If 
variables are independent random variables then p = 0. Values of +1 and -1 
correspond to full positive and negative dependence respectively. Note: the 
existence of some correlation need not imply that the link is one of cause and 
effect. 
Decision uncertainty - The rational inability to choose between alternative 
options. 
Design objective - The objective (put forward by a stakeholder), describing 
the desired performance of an intervention, once implemented. 
Dependence - The extent to which one variable depends on another variable. 
Dependence affects the likelihood of two or more thresholds being exceeded 
simultaneously. When it is not known whether dependence exists between 
two variables or parameters, guidance on the importance of any assumption 
can be provided by assessing the fully dependent and independent cases (see 
also correlation). 
Demand – Amount of water consumed/extracted by domestic and industrial 
users from the WDN (typically expressed in volumetric terms per unit time 
period). 
Deterministic process / method - A method or process that adopts precise, 
single-values for all variables and input values, giving a single value output. 
Discharge (stream, river, sewer pipe) - as measured by volume per unit of 
time. 
Dry Weather Flow – Flow in the sewer system during dry weather that 
originates from domestic and industrial users. 
Element - A component part of a system. 
Epistemology - A theory of what we can know and why or how we can know 
it. 
Error - Mistaken calculations (e.g. from a model) or measurements with 
quantifiable and predictable differences.  
Expectation – the expected value of a variable refers to the mean value the 
variable takes. For example, in a 100 year period, a 1 in 100 year event is 
expected to be equalled or exceeded once. This can be defined 
mathematically.  
Extrapolation - The inference of unknown data from known data, for instance 
future data from past data, by analysing trends and making assumptions. 
Applying a derived relationship from one time-period to conditions different 
from that in which the relationship was derived. 
Failure - Inability to achieve a defined performance threshold (response given 
loading). "Catastrophic" failure describes the situation where the 
consequences are immediate and severe, whereas "prognostic" failure 
describes the situation where the consequences only grow to a significant 
level when additional loading has been applied and/or time has elapsed. 
Failure mode - Description of one of any number of ways in which a system 
may fail to meet a particular performance indicator. 
Functional design - The design of an intervention with a clear understanding 
of the performance required of the intervention. 
Governance - The processes of decision making and implementation 
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Harm - Disadvantageous consequences; economic, social or environmental 
(See Consequence). 
Hazard - A physical event, phenomenon or human activity with the potential 
to result in harm. A hazard does not necessarily lead to harm. 
Hazard mapping - The process of establishing the spatial extents of 
hazardous phenomena. 
Hierarchy - A process where information cascades from a greater spatial or 
temporal scale to lesser scale and vice versa. 
Human reliability - Probability that a person correctly performs a specified 
task. 
Ignorance - Lack of knowledge. 
Institutional uncertainty - inadequate collaboration and/or trust among 
institutions, potentially due to poor communication, lack of understanding, 
overall bureaucratic culture, conflicting sub-cultures, traditions and missions. 
Integrated risk management- An approach to risk management that 
embraces all sources, pathways and receptors of risk and considers 
combinations of structural and non-structural solutions. 
Integrated Water Resource Management - IWRM is a process which 
promotes the co-ordinated management and development of water, land and 
related resources, in order to maximise the resultant economic and social 
welfare in an equitable manner without compromising the sustainability of 
vital  ecosystems. 
Intervention - A planned activity designed to effect an improvement in an 
existing natural or engineered system (including social, organisation/defence 
systems). 
Joint probability - The probability of specific values of one or more variables 
occurring simultaneously. For example, extreme water levels in estuaries may 
occur at times of high river flow, times of high sea level or times when both 
river flow and sea level are above average levels. When assessing the 
likelihood of occurrence of high estuarine water levels it is therefore 
necessary to consider the joint probability of high river flows and high sea 
levels. 
Judgement - Decisions taken arising from the critical assessment of the 
relevant knowledge. 
Knowledge - Spectrum of known relevant information. 
Knowledge uncertainty - Uncertainty due to lack of knowledge of all the 
causes and effects in a physical or social system (also termed epistemic 
uncertainty). For example, a numerical model of the sewer system may not 
include an accurate mathematical description of all the relevant physical 
processes. The model is thus subject to a form of knowledge uncertainty. 
Various forms of knowledge uncertainty exist, including: 
Process model uncertainty - All models are an abstraction of reality and can 
never be considered true. They are thus subject to process model uncertainty. 
Measured data versus modelled data comparisons give an insight into the 
extent of model uncertainty but do not produce a complete picture. 
Statistical inference uncertainty - Formal quantification of the uncertainty of 
estimating the population from a sample. The uncertainty is related to the 
extent of data and variability of the data that make up the sample. 
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Statistical model uncertainty - Uncertainty associated with the fitting of a 
statistical model. The statistical model is usually assumed to be correct. 
However, if two different models fit a set of data equally well but have 
different extrapolations/interpolations then this assumption is not valid and 
there is statistical model uncertainty. 
Likelihood - A general concept relating to the chance of an event occurring. 
Likelihood is generally expressed as a probability or a frequency (as a value 
between 0 = impossible; 1 = certain). 
Marginal Probability – see Probability. 
Mitigation – to moderate the force or impacts of an event.  
Natural variability - Uncertainties that stem from the assumed inherent 
randomness and basic unpredictability in the natural world and are 
characterised by the variability in known or observable populations (also 
known as Aleatory uncertainty). 
Objectives – A goal, typically defined as the maximisation or minimisation of 
a given function. For example, minimise cost whilst maintain system 
performance.  
Optimisation – Intervention that achieves the best performance of a system in 
reference to one or more (competing) objectives. In modelling, adjustment of 
system parameters to achieve objectives pertaining to the modelled system. 
Parameters - The parameters in a model are the constants chosen to represent 
the chosen context and scenario. In general the following types of parameters 
can be recognised: 
Exact parameters - which are universal constants, such as the mathematical 
constant: Pi (3.14259...). 
Fixed parameters - which are well determined by experiment and may be 
considered exact, such as the acceleration of gravity, g (approximately 9.81 
m/s).  
A-priori chosen parameters - which are parameters that may be difficult to 
identify by calibration and so are assigned certain values. However, the 
values of such parameters are associated with uncertainty that must be 
estimated on the basis of a-priori experience, for example detailed 
experimental or field measurements  
Calibration parameters - which must be established to represent particular 
circumstances. They must be determined by calibration of model results for 
historical data on both input and outcome. The parameters are generally 
chosen to minimise the difference between model outcomes and measured 
data on the same outcomes. It is unlikely that the set of parameters required 
to achieve a "satisfactory" calibration is unique, reflecting a state of 
equifinality. 
Parameter Hypercube - Multi-dimensional mode space where each 
dimension consists of a range of potential values for a particular model 
parameter.  
Performance - The degree to which a process or activity succeeds when 
evaluated against some stated aim or objective. 
Performance indicator - The well-articulated and measurable objectives of a 
particular project or policy. These may be detailed engineering performance 
indicators, such as acceptable CSO volumes, minimum pressure in WDN, 
rock stability, or more generic indicators such as public satisfaction. 
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Possibility – The likelihood of a state or event occurring in the future. 
Possibility differs from probability. Possibility theory was developed in the 
face of uncertain and often subjective understanding of the propensity for 
future states with little information from the past to inform on future 
likelihood.  
Precautionary Principle - Where there are threats of serious or irreversible 
damage, lack of full scientific certainty shall not be used as a reason for 
postponing cost-effective measures to prevent environmental degradation. 
Precision - degree of exactness regardless of accuracy. 
Preparedness - The ability to ensure effective response to the impact of 
hazards, including the issuance of timely and effective early warnings and the 
temporary evacuation of people and property from threatened locations. 
Probability - A measure of our strength of belief that an event will occur. For 
events that occur repeatedly the probability of an event is estimated from the 
relative frequency of occurrence of that event, out of all possible events. In all 
cases the event in question has to be precisely defined, so, for example, for 
events that occur through time reference has to be made to the time period, 
for example, annual exceedance probability. Probability can be expressed as a 
fraction, % or decimal. For example the probability of obtaining a six with a 
shake of four dice is 1/6, 16.7% or 0.167.  
Probabilistic method - Method in which the variability of input values and 
the sensitivity of the results are taken into account to give results in the form 
of a range of probabilities for different outcomes. 
Probability density function (distribution) - Function which describes the 
probability of different values across the whole range of a variable (for 
example across a parameter value in a particular model). 
Probabilistic reliability methods - These methods attempt to define the 
proximity of a structure to fail through assessment of a response function. 
They are categorised as Level III, II or I, based on the degree of complexity 
and the simplifying assumptions made (Level III being the most complex). 
Process model uncertainty - See Knowledge uncertainty. 
Project Appraisal - The comparison of the identified courses of action in 
terms of their performance against some desired ends. 
Progressive failure - Failure where, once a threshold is exceeded, significant 
(residual) resistance remains enabling the defence to maintain restricted 
performance. The immediate consequences of failure are not necessarily 
dramatic but further, progressive, failures may result eventually leading to a 
complete loss of function. 
Random events - Events which have no discernible pattern. 
Receiving water body – A water body, typically a river, lake or sea that 
receives effluent from the Sewer system or WWTP. 
Recovery time - The time taken for an element or system to return to its prior 
state after a perturbation or applied stress. 
Reliability index - A probabilistic measure of the structural reliability with 
regard to any limit state. 
Resilience - The ability of a system/community/society/defence to react to 
and recover from the damaging effect of realised hazards. 
Resistance . The ability of a system to remain unchanged by external events. 
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Return period - The expected (mean) time (usually in years) between the 
exceedence of a particular extreme threshold. Return period is traditionally 
used to express the frequency of occurrence of an event, although it is often 
misunderstood as being a probability of occurrence. 
Risk - Risk is a function of probability, exposure and vulnerability. Often, in 
practice, exposure is incorporated in the assessment of consequences, 
therefore risk can be considered as having two components: the probability 
that an event will occur and the impact (or consequence) associated with that 
event. See Section 4.3 above. Risk = Probability multiplied by consequence 
Risk analysis - A methodology to objectively determine risk by analysing and 
combining probabilities and consequences. 
Risk assessment - Comprises understanding, evaluating and interpreting the 
perceptions of risk and societal tolerances of risk to inform decisions and 
actions in the flood risk management process. 
Risk communication (in context) - Any intentional exchange of information 
on environmental and/or health risks between interested parties. 
Risk management - The complete process of risk analysis, risk assessment, 
options appraisal and implementation of risk management measures 
Risk management measure - An action that is taken to reduce either the 
probability of flooding or the consequences of flooding or some combination 
of the two 
Risk mapping - The process of establishing the spatial extent of risk 
(combining information on probability and consequences). Risk mapping 
requires combining maps of hazards and vulnerabilities. The results of these 
analyses are usually presented in the form of maps that show the magnitude 
and nature of the risk. 
Risk mitigation - See Risk reduction. 
Risk perception - Risk perception is the view of risk held by a person or 
group and reflects cultural and personal values, as well as experience. 
Risk reduction - The reduction of the likelihood of harm, by either reduction 
in the probability of a flood occurring or a reduction in the exposure or 
vulnerability of the receptors. 
Risk profile - The change in performance, and significance of the resulting 
consequences, under a range of loading conditions. In particular the 
sensitivity to extreme loads and degree of uncertainty about future 
performance. 
Risk register - An auditable record of the project risks, their consequences 
and significance, and proposed mitigation and management measures. 
Risk significance (in context) - The separate consideration of the magnitude 
of consequences and the frequency of occurrence. 
Robustness - Capability to cope with external stress. A decision is robust if 
the choice between the alternatives is unaffected by a wide range of possible 
future states of nature. Robust statistics are those whose validity does not 
depend on close approximation to a particular distribution function and/or 
the level of measurement achieved. 
SCADA – Supervisory Control And Data Acquisition. Computer systems that 
monitor the state of a system, and allow control of devises within the system.  
Scale - Difference in spatial extent or over time or in magnitude; critical 
determinant of vulnerability, resilience etc. 
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Scenario - A plausible description of a situation, based on a coherent and 
internally consistent set of assumptions. Scenarios are neither predictions nor 
forecasts. The results of scenarios (unlike forecasts) depend on the boundary 
conditions of the scenario. 
Sensitivity - Refers to either: the resilience of a particular receptor to a given 
hazard. For example, frequent sea water flooding may have considerably 
greater impact on a fresh water habitat, than a brackish lagoon; or: the change 
in a result or conclusion arising from a specific perturbation in input values or 
assumptions. 
Sensitivity Analysis - The identification of those parameters which critically 
affect the output of a model or process. Conducted to better understand 
system operation, and allocate resources to constrain model output. 
Sewer System – Infrastructure of pipes and control structures that conveys 
sewerage and rainfall-runoff in urban areas from buildings and the roads to 
the wastewater treatment plant and receiving water body. 
Skeletonisation – Removal of pipes not considered essential to the operation 
of a WDN model. 
Source - The origin of a hazard (for example, heavy rainfall, strong winds, 
surge etc). 
Stakeholders - Parties/persons with a direct interest (stake) in an issue. 
Stakeholder Engagement - Process through which the stakeholders have 
power to influence the outcome of the decision. Critically, the extent and 
nature of the power given to the stakeholders varies between different forms 
of stakeholder engagement. 
Statistic - A measurement of a variable of interest which is subject to random 
variation. 
Strategy - A strategy is a combination of long-term goals, aims, specific 
targets, technical measures, policy instruments, and process which are 
continuously aligned with the societal context. 
Strategic spatial planning - Process for developing plans explicitly 
containing strategic intentions referring to spatial development. Strategic 
plans typically exist at different spatial levels (local, regional etc). 
Statistical inference uncertainty - See Knowledge uncertainty 
Statistical model uncertainty - See Knowledge uncertainty 
Sustainable Development - is development that meets the needs of the 
present without compromising the ability of future generations to meet their 
own needs 
Susceptibility - The propensity of a particular receptor to experience harm. 
System - An assembly of elements, and the interconnections between them, 
constituting a whole and generally characterised by its behaviour.  
System state - The condition of a system at a point in time. 
Tolerability - Refers to willingness to live with a risk to secure certain 
benefits and in the confidence that it is being properly controlled. To tolerate 
a risk means that we do not regard it as negligible, or something we might 
ignore, but rather as something we need to keep under review, and reduce 
still further if and as we can. Tolerability does not mean acceptability. For 
example, tolerance of CSO or sewer surcharge. 
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Uncertainty - A general concept that reflects our lack of sureness about 
someone or something, ranging from just short of complete sureness to an 
almost complete lack of conviction about an outcome. 
Urban Wastewater System – triplet of components: Sewer System, 
Wastewater treatment plant and receiving water body designed to mitigate 
against flooding and provide sanitation. 
Validation - is the process of comparing model output with observations of 
the ’real world’. 
Variability - The change over time of the value or state of some parameter or 
system or element where this change may be systemic, cyclical or exhibit no 
apparent pattern. 
Variable - A quantity which can be measured, predicted or forecast which is 
relevant to describing the state of the flooding system e.g. water level, 
discharge, velocity, wave height, distance, or time. A prediction or forecast of 
a variable will often rely on a simulation model which incorporates a set of 
parameters. 
Vulnerability - Characteristic of a system that describes its potential to be 
harmed. This can be considered as a combination of susceptibility and value. 
Wastewater Treatment Plant (WWTP) – Treatment plant for the removal of 
contaminants and nutrients from sewerage for entry as effluent into the 
receiving water body. 
Water Distribution Network (WDN) – Network of pipes, pumps, nodes, 
tanks and valves that distributes drinking water to meet consumer demands. 

 


