

Integrated optimisation for reservoir operation using Genetic Algorithms GA Aquator

Lydia Vamvakeridou-Lyroudia

Mark Morley

Josef Bicik

Dragan Savic

Godfey Walters

Chris Green

Peter Edgley

Will Clark

University of Exeter-CWS

L.S. Vamvakeridou-Lyroudia@ex.ac.uk

D. Savic@ex.ac.uk

Oxford Scientific Software

chris.green@oxscisoft.com

09/12/2008

1

What is this presentation about?

- AQUATOR: (OXSCISOFT)
 - ■Water supply system simulation software
 - □In use by several UK water companies
- Genetic Algorithms: (University of Exeter-CWS)
 - □Genetic Algorithms software for optimisation (generic software)
- Project: Linking AQUATOR with Genetic Algorithms, and applying them for the optimisation single reservoir systems for use by United Utilities
 - □ 2 Test case studies

Previous steps

- Barnacre system (UU):
 - □Test case study
- AQUATOR: (OXSCISOFT)
 - □ (VBA Excel controlled)
- GANET XL: (University of Exeter-CWS)
 - □Genetic Algorithm platform for optimisation (generic software Add-in for Excel)
- Objective: Linking <u>AQUATOR</u> with <u>GANET_XL</u>, and applying them for the optimisation of <u>Barnacre system</u>

Outcomes

- Preliminary report
 - □May 2006
 - □Successful
- Initial Proposal
 - ☐ September 2006
- Proposal
- □July 2008
- □GA module integrated to AQUATOR
- □ Reducing run time by applying distributed computing
- □2 case studies (<u>Barnacre System</u> and <u>Watergrove & Springmill</u>)

$$V_t = V_{t-1} + I_t - O_t$$

$$\forall t, \quad t = 1,...n$$

$$V_{\min} \le V_t \le V_{\max}$$

$$C_{\min}(\%) = \frac{V_{\min}}{V_{\max}} \times 100$$
 $C_{\max} = 100\%$

$$Water demand W_t = \begin{cases} D_t & if & \frac{V_t}{V_{\text{max}}} \times 100 \ge C_i \\ & & \forall t, \quad t = 1, ... n \end{cases}$$

$$X & if & \frac{V_t}{V_{\text{max}}} \times 100 < C_i$$

- If $V_t < Vmin \rightarrow O_t < Water demand W_t \rightarrow Failure + Water deficit$
- If $Vt < Vmax \rightarrow Spill \rightarrow Failure...$
- Water companies apply deterministic approach, based on historic (existing) input and demand data series

- Previous approach by Water Companies (2 steps)
 - Parameter X defined initially, by trials, as the max value with Ci=100% for all months, with no failures
 - •Then (endless) trial-and-error manual computations (EXCEL) to estimate proper values for each Ci (12 values) or (using a DP algorithm, in some cases)

Genetic Algorithms (GA)

- Optimisation method suitable
 - For "hard" problems (non-linear/discrete/non convex)
 - For "difficult" decision variables
 - For "strange" constraints
 - For discrete search space/variables
 - For one (single) or more (multi-) objective problems
 - Directed random search
- Based on Darwinian evolution principles ("Survival of the fittest")
- Solutions can be reproduced (repeatable)

Single objective GA

- <u>Decision variables</u> (unknowns): (<u>Multiple</u> control curves now possible)
 - X (cutback yield)
 - \succ Ci, i=1,12 (monthly control curve components)
- Total: 13 unknowns = string of 13 decision variables for 1 control curve
- •13*2=26 unknowns = string of 26 decision variables for 2 control curves, ...3*13=39 for 3 control curves....
- Objective function: max V (Yield/total volume)
- •Shape Constraints for the control curve: No supply deficits (SD=0) / failures (NF=0), limits to the number of changes in a year/magnitude of change... ←NEW

Shape constraints (GA)

Magnitude of change in consecutive months → DC

$$dc_{i} = \begin{cases} |C_{i} - C_{i-1}| & for \quad i = 2, \dots 12 \\ |C_{i} - C_{12}| & for \quad i = 1 \end{cases}$$

$$DC = \max \{dc_{i}, i = 1, \dots 12\}$$

Number of changes in a year> significant step → NC

$$nc_{i} = \begin{cases} 1 & if & dc_{i} \ge step \\ 0 & if & dc_{i} < step \end{cases}$$

$$NC = \sum_{i=1}^{12} nc_{i}$$

These two shape parameters introduced as secondary
 Objective functions for the GA

13

Multi-objective GA

➤ Objective function (1): max V (Yield/total volume)

>AND

➤ Objective function (2): min NC (number of changes in the control curve in a year)

>AND/OR

- ➤ Objective function (3): min DC (magnitude of changes in the control curve for consecutive months)
- Constraints: No supply deficits (SD=0) / failures (NF=0), limits to the number of changes in a year, control curve discretisation step... (any other)
- Trade-off curve of non-inferior solutions (Pareto points)

Case study 1: Barnacre system

Barnacre system test problem

- Single reservoir
- No energy costs taken into account (gravity fed)
- Target: Maximising yield (water volume) AND
- No deficits/No spills → No failures
- Decision variables (Unknowns): X and C_i, i=1,12
- •Initial optimal solution given by UU for comparison/testing

Barnacre system test problem

- Control curve (monthly) C_i, i=1,12
- Ci % of max water volume (reservoir capacity)
- If storage > Ci → Outflow= 40 Mld
- If storage < Ci → Outflow= X (cutback yield)
- If storage < minimum → deficit (To be avoided)

AQUATOR+BARNACRE

- AQUATOR: Water supply system simulation software (VBA)
- Excel controlled)
- Barnacre system loaded at AQUATOR
- Simulation results successful for 1927-2002

GANET-XL

- Generic platform for optimisation with Genetic Algorithms
- Performing single objective and multiobjective optimisation
- Add-in for Excel: (VBA)
- Excel controlled)
- Dialog box
- On screen running

AQUATOR+GANET_XL+Barnacre

- AQUATOR: Additional/special control spreadsheet/macros prepared so as to "communicate" with GANET_XL.
 Successfully combined
- Applied for Barnacre system for optimisation
- For the critical period 1992-1998 to reduce the simulation run time (and checking for all)
- •ଃଧ୍ୟ ୧୯ esults (...)

Structure

Selected Solutions for Barnacre

1992-1998	Original	Smooth	Smooth	Smooth	Min	Min	
	UU	curve	curve	curve	changes	changes	Max yield
					1 change	2changes	
max dC%	6.90	1.00	2.00	3.00	13.45	42.28	38.00
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Rate A	40.00	40.00	40.00	40.00	40.00	40.00	40.00
Rate B=X	19.1800	19.12898	19.03226	19.00012	19.18536	19.18536	19.12691
Jan	92.60	97.00	94.00	93.00	86.55	57.72	60.00
Feb	99.50	98.00	96.00	92.00	86.55	57.72	60.00
Mar	100.00	99.00	96.00	95.00	100.00	100.00	98.00
Apr	100.00	100.00	98.00	98.00	100.00	100.00	100.00
May	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Jun	100.00	100.00	100.00	100.00	86.55	86.55	100.00
Jul	100.00	100.00	100.00	100.00	86.55	86.55	100.00
Aug	100.00	100.00	100.00	100.00	86.55	86.55	100.00
Sep	96.30	100.00	100.00	99.00	86.55	86.55	100.00
Oct	91.50	99.00	98.00	97.00	86.55	86.55	89.00
Nov	88.80	98.00	96.00	94.00	86.55	86.55	74.00
Dec	89.80	98.00	96.00	91.00	86.55	86.55	94.00
Failures	0	0	0	0	0	0	0
Deficit	0	0	0	0	0	0	0
Volume	48203	49580	50288	50330	49297	50796	50807
Volume increase %	0.00	2.86	4.32	4.41	2.27	5.38	5.40

Different control curves (Barnacre)

Different control curves (Barnacre)

─ (5) 1change, Yield=49297

→ (6) 2changes, Yield=50796

→ (7) max Yield=50807

Smooth control curves (2) (Barnacre)

Increased yield (3) (Barnacre)

AQUATOR+GANET XL outcomes...

Advantages:

- AQUATOR and GANET_XL can be combined and integrated
- It can improve results (volume and "smoothness" of the curve)
- Optimisation in one step (X and Ci simultaneously), even for complex systems with multiple reservoirs
- Any other objective/constraint can be added
- Convinced UU to proceed...

Problem:

- Time needed (thousands of generations/AQUATOR) simulations) → distribution to computers in parallel → NEXT!
- Shortening the time by critical period concept and other techniques ...

Next step: GA-Aquator: Integration

- GA Optimisation developed as add-in to AQUATOR
- Activated through AQUATOR (GA-Aquator)
- Optimisation set up by the user (menus in AQUATOR)

Multiobjective GA-Trade-off curve

GA-Aquator

Problem:

Time needed (thousands of generations/AQUATOR simulations) → distribution to computers in parallel

Shortening the time by

- Critical period concept
 - Optimising for a short critical period
 - Checking (internal for GA-Aquator) for full period
- Improving the GA ... (new version-OMNI Optimiser)
 - Larger population (100-200)
 - 'Near optimal' results in 150-300 generations (instead of 3000)
- Distributed computing (computers working in parallel)...

Structure

GA-Aquator

Problem:

Time needed (thousands of generations/AQUATOR simulations) → distribution to computers in parallel

Shortening the time by

- Critical period concept
 - Optimising for a short critical period
 - Checking (internal for GA-Aquator) for full period
- Improving the GA ... (new version-OMNI Optimiser)
 - Larger population (100-200)
 - 'Near optimal' results in 150-300 generations (instead of 3000)
- Distributed computing (computers working in parallel)...

GA-optimiser

Improving the GA

- Omni-Optimiser... New...
- Universal (single + multi) objective optimisation
- Maintains variability in objective and decision space
- Robust and disruptive mutation operator
- Deb, K., and Tiwari, S. (2008). "Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization." European Journal of Operational Research", 185(3), 1062-1087.
- Applied in GA-Aquator for larger population (100-200) than GANET_XL (20-50)
- 'Near optimal' results in 150 generations (instead of 3000) in under 1 hr (+distributed computing)

New GA-trade-off curves (Barnacre)

2nd case study Watergrove & Springmill system

W&S system test problem

- Single reservoir
- Spills /No energy costs taken into account (gravity fed)
- Target: Maximising yield (water volume) AND No deficits
- Decision variables (Unknowns): X and C_i, i=1,12
- Initial optimal solution given by UU (X fixed at UU request)

W&S system test problem

- Control curve (monthly) C_i, i=1,12
- Ci % of max water volume (reservoir capacity)
- If storage > Ci → Outflow= 15.21 Mld
- If storage < Ci → Outflow= X=8.29 (cutback yield)
- If storage < minimum → deficit (To be avoided)
- •If storage > maximum \rightarrow spills (To be avoided)

Selected Solutions for W&S

1993-1997	Original	Smoother	Smoother	Smoother	Smoother		
	UU	curve	curve	curve	curve	Max yield	Max yield
max dC%	15.67	10.90	11.32	12.77	13.38	18.48	20.21
		(2)	(3)	(4)	(5)	(6)	(7)
Rate A	15.21	15.21	15.21	15.21	15.21	15.21	15.21
Rate B=X	8.2900	8.29000	8.29000	8.29000	8.29000	8.29000	8.29000
Jan	72.24	68.47	68.47	62.60	66.73	51.17	49.37
Feb	84.92	77.89	76.98	69.48	69.26	69.65	69.58
Mar	92.99	84.08	84.08	82.26	82.63	87.68	82.44
Apr	97.16	94.80	94.90	94.96	95.33	95.34	95.33
May	100.00	90.57	91.19	91.19	89.44	89.44	91.23
Jun	98.66	87.55	87.55	87.55	86.25	86.83	84.57
Jul	87.76	76.96	76.24	75.48	76.37	76.28	75.95
Aug	72.09	68.03	66.88	66.94	67.13	66.85	66.85
Sep	60.30	58.35	58.35	58.62	57.45	57.56	57.43
Oct	52.53	55.70	55.70	55.98	54.24	52.85	54.18
Nov	54.77	50.10	50.10	49.94	49.54	49.54	49.54
Dec	61.64	57.57	57.91	57.63	53.76	50.90	58.12
Failures		0	0	0	0	0	0
Deficit		0	0	0	0	0	0
Volume	16077	16748	16783	16824	16852	16866	16880
Volume increase %		4.18	4.39	4.65	4.82	4.91	4.99
Volume full period	371165	390659	391171	391662	392901	392597	393226
Volume increase %		5.25	5.39	5.52	5.86	5.77	5.94
full period		5.25	5.38	5.52	5.00	5.77	J.9 4

Trade-off curve for W&S/Critical period

Trade-off curve for W&S (Full period)

GA-Aquator

Advantages/Conclusions:

- AQUATOR and GA have been combined and integrated
- It can improve results (volume and "smoothness" of the curve)
- Optimisation in one step (X and Ci simultaneously), even for complex systems with multiple reservoirs
- Multiple objectives in order to 'shape' the curve.
- Interest by the Water Companies ("real" problem)
- Distributed computing applied
- Improved MOGA + gaining experience

GA-Aquator

Next steps:

- Optimising for Reservoir System with multiple curves (to start with UU in the spring)
- Extending to multiple reservoirs through AQUATOR
- Extending to other Water Companies
- Extending similar techniques and experience for integrating GA to other "commercial" water system software

09/12/2008 42

GA-Aquator

- Demonstration...
- Distributed computing for GA-AQUATOR

By Josef Bicik...

Ditsributed computing for GA-Aquator

Inter-Process Communication

Inter-Process Communication

- MPI Message Passing Interface
 - Communication protocol for parallel computing
 - Widely adopted
 - Available on ZEN (Physics supercomputer)
 - Mostly distributed communication
- Pipes
 - Bi-directional communication between 2 processes
 - Behaves like a normal file but data only in memory
 - Supported by operating system (POSIX)
 - Mostly local communication

Thank you for your attention

09/12/2008 47

Links

- MPI http://www.mcs.anl.gov/research/projects/mpich2/
- ZEN Supercomputer http://newton.ex.ac.uk/features/supercomputer.html
- Omni optimizer -

http://linkinghub.elsevier.com/retrieve/pii/S037722170600

6291

http://www.iitk.ac.in/kangal/seminar/omni.ppt