STARVING IN THE MIDST OF ABUNDANT ENERGY: WHAT CAN BE DONE?

Eleanya Nduka

University of Exeter

en275@exeter.ac.uk

March 27, 2019

Introduction

- The UN SDG 7 aims at ensuring access to clean, affordable, reliable, sustainable energy for all by 2030
- Globally, about 1.1 billion people have no access to electricity (IEA, 2017).

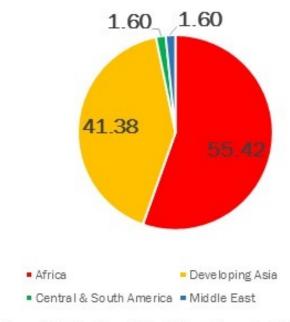


Figure 1: Regional Population Without Access to Electricity (%)

Nigerian Context

• About 74 million people out of 186.6 million lack access to electricity

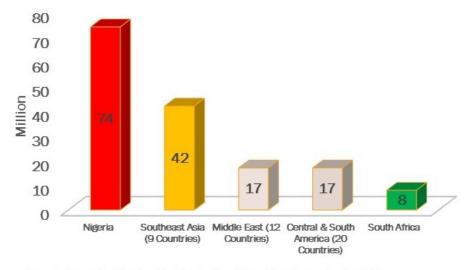
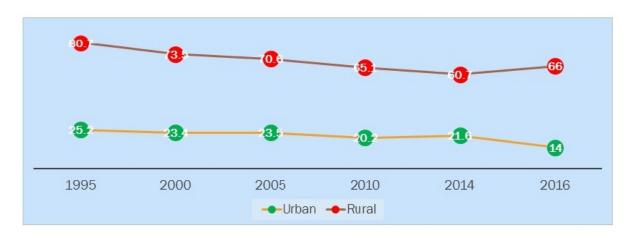
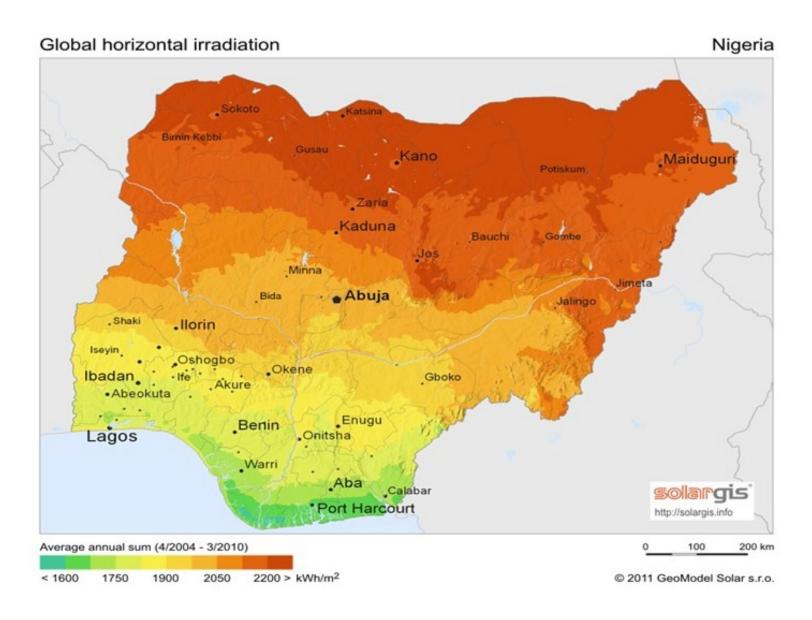
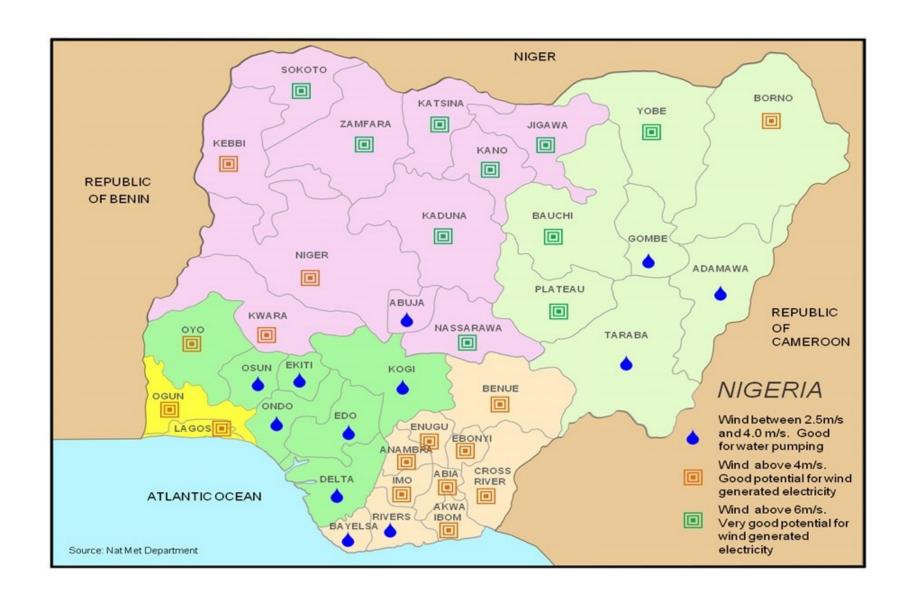
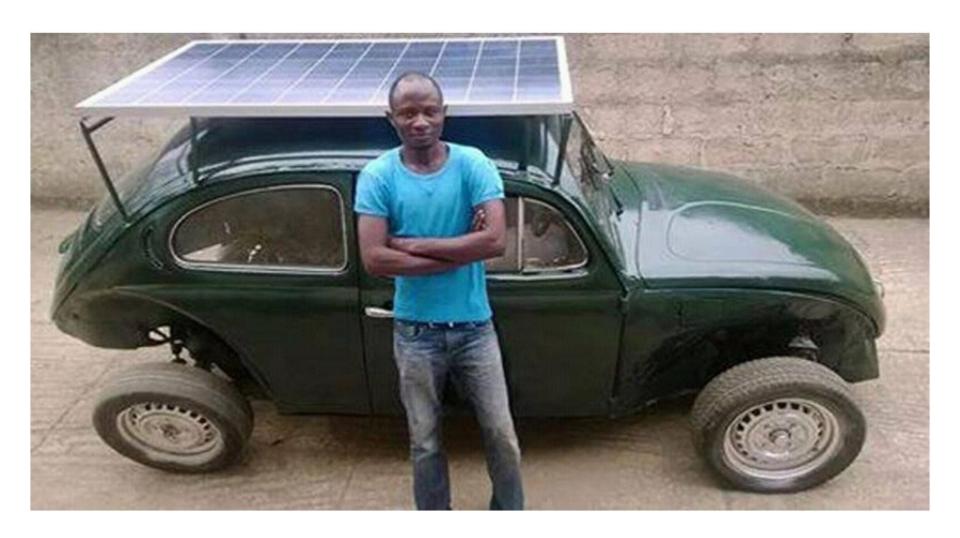



Figure 2: Comparing Nigeria with other Regions' Pop without Access to Electricity



Nigerian Context cont'd


• About 58% and 28.7% of the total households use kerosene for lighting and cooking respectively. 57% rely on fire wood for cooking (IEA, 2017; World Bank, 2018; Nigeria Data Portal, 2018).


Renewable Energy Resources

Renewable Energy Resources cont'd

Renewable Energy Resources cont'd

Government Policies

- Private sector-driven renewable energy projects
- Gradual increase in percentage share of electricity from renewable sources excluding hydro

Table 1: Planned Increase

			<i></i>
Year	2015*	2025	2030
Proportion	13%	23%	36%

Tabele 2: Status Quo

Sources/Year	1995	2005	2010	2015*
Fossil Fuels	65.3%	67.0%	75.6%	82.4%
***Hydro	34.7%	33.0%	24.4%	17.6%
Other	0%	0%	0%	0%
Renw				

Constraints to Change in Energy Status Quo

- The Dutch disease syndrome
- Underdeveloped private sector
- Weak institutions
- Infrastructure problem
- Business syndicates
- Initial cost and limited awareness

Proposed Change for Rural Households

Proposed change

Research Questions

- 1. What is the expected monthly willingness to pay (WTP) for these alternative energy sources?
- 2. What factors affect WTP for them?
- 3. Is it feasible to invest in them?

Brief Literature Review

- Roy & Jana (1998) report that 32% of Indian rural households are willing to pay for solar lantern, while 68% prefer to get it on lease.
- Meanwhile, Yoon et al. (2016) argue that Indian rural households do not find solar lantern valuable as indicated by their low willingness to pay of \$0.50 (35.14 rupees) for it.
- Bangladeshi rural households indicate \$0.432/kWh willingness to pay for mini off-grid RE (Alam & Bhattacharyya, 2017.)

Literature Review Cont'd.

- About 80% Bangladeshi households & 90% Burkinabé households are not willing to pay for improved cookstoves, but prefer to receive them free (Rosenbaum et al., 2015; Bensch et al., 2015).
- In contrast, close to 100% rural households in Senegal are willing to pay for improved cookstoves (Bensch & Peters, 2015).

Theoretical Framework

• The contingent valuation (CV) study is anchored on the indirect utility function (Hanemann, 1984):

$$v = v(y, p, q, z, e) \tag{1}$$

$$v_1(y - B, q_1, z, e_1) = v_0(y, q_0, z, e_0)$$
(2)

- If $q_1 > q_0$ then q_1 is an improved environmental good
- Thus, the probability of a randomly selected household saying a "yes" to the CV question is

$$pr[v_1(y-B,q_1,z,e_1) > v_0(y,q_0,z,e_0)]$$
(3)

$$WTP_{i} = X_{i}'\beta + \epsilon_{i} \tag{4}$$

$$E(WTP_i) = -\frac{\alpha}{\beta} \tag{5}$$

The Survey Design

- A referendum type questionnaire was used to elicit households' WTP for the technologies in the South East Nigeria.
- Two enumerators were trained and used for the survey.
- A focus group and pilot study were conducted before the main study
- A total of 218 households were randomly selected and interviewed via face-to-face

Results: Descriptive Stat.

σ 11 σ	\mathbf{D}	C	(<i>T</i> • 11
Table 3.	Lonnition	\cap t	Variables
Table 9.	Definition	ΟI	variabics

Variable	Definition	Percent/Mean	Std. Error	Min.	Max.	Obs.
bid1	Bid for Pico-PV	£0.87	.452	£0.21	£1.48	218
$\operatorname{bid}2$	Bid for ICS	£ 0.67	.250	£ 0.32	£1.06	218
t1(PPV)	Pay the $bid(1=yes, 0 \text{ otherwise})$	92%	.276	0	1	218
t2(ICS)	Pay the $bid(1=yes, 0 \text{ otherwise})$	82%	.388	0	1	218
income	(1=at least £38.09, 0 otherwise)	32%	.466	0	1	218
sex	1=female, 0 otherwise	53%	.500	0	1	218
age		44.90%	15.373	23	78	218
education	(1=at least basic, 0 otherwise)	41%	.333	0	1	218
married	1=yes, 0 otherwise	90%	.296	0	1	218
employment	full emply.(1=yes, 0 otherwise)	90%	.302	0	1	218
own PPV	Own a $PPV(1=yes, 0 \text{ otherwise})$	5%	.219	0	1	218
kero-lantern	Use kero lant.(1=yes, 0 otherwise)	63%	.483	0	1	218
lantern cost	Monthly expenditure	£2.50	1.703	£ 0.53	£ 7.40	137
own 3-stone-fires	Use $3-sf(1=yes, 0 \text{ otherwise})$	94%	.246	0	1	218
stove cost	Monthly expenditure on 3-sf	£ 4.92	2.888	£ 2.00	£ 16.9	205
$\operatorname{num_children}$	Number of children	5.42	3.523	1	26	215
RE Knowledge						
	very poor	45%				218
	poor	30%				218
	average	18%				218
	good	5%				218
	excellent	2%				218
ICS kowledge	(1=yes, 0 otherwise)	8%				218

Welfare Estimates

Table 4: Monthly mean WTP with Covariates

PPS	D	romotrio Mod	ola	
	Parametric Models			
	Unt. logit	Trun. L.	Unt. Probit.	Trun. P
$\overline{E(WTP)}$	£2.20	£2.30	£2.20	£2.40
S.E	(1.031)	(.954)	(1.019)	(.959)
95% C.I.	£ 0.10 -£ 4.20	£ 0.40 -£ 4.10	£0.20-£4.20	£0.50-£4.30
${ m LL}.$	-47.154	-47.003	-47.154	-47.154
$\overline{\text{ICS}}$				
$\overline{E(WTP)}$	£2.10	£2.20	£2.10	£2.30
St. Error	(.823)	(.907)	(.838)	(.992)
95% C.I.	£ 0.50 -£ 3.70	£ 0.40 -£ 3.90	£ 0.50 -£ 3.80	£0.40-£4.30
LL.	-93.238	-93.154	-93.238	-93.154

Regression Results

Table 5: Results of PPV

Table 5. Results of f f v			
Log	git Model	Probit Model	
Variable	Estimates 1	Estimates 2	
Bid	003**	0012**	
	(.002)	(.001)	
Income	16.123***	5.44***	
	(1.239)	(.842)	
Sex	-16.809***	-5.387***	
	(.747)	(.405)	
Age	038**	021**	
	(.016)	(.008)	
Married	1.056**	.602**	
	(.518)	(.297)	
Education	.270	.158	
	(1.508)	(.559)	
Employment	.360	.207	
	(.809)	(.429)	
PPV Own	-2.140**	-1.221**	
	(.916)	(.560)	
Sex*Inc	-16.484***	-5.480***	
	(1.514)	(.987)	
Sex*Edu	16.484***	5.305***	
	(.746)	(.503)	
Sex*Emplmt	-16.889***	-5.537***	
	(1.416)	(.584)	
Constant	21.179***	7.801***	
	(2.044)	(.877)	
LL.	-47.154	-47.003	

Regression Cont'd

Table 6: Results of ICS

Table 9: Testiles 91 108			
	Logit Model	Probit Model	
Variable	Estimates 1	Estimates 2	
Bid	003**	002**	
	(.002)	(.0008)	
Income	.649	.432	
	(.735)	(.395)	
Sex	667*	368*	
	(.355)	(.198)	
Age	039***	022***	
	(.014)	(.008)	
Married	-1.225^*	.716*	
	(.714)	(.414)	
3-sf expen	.00009**	.00005***	
	(.00003)	(.00002)	
Children	.119	.069	
	(.087)	(.049)	
Constant	4.34***	2.432***	
	(1.440)	(.755)	
LL.	-98.238	-93.154	

Cost-Benefit Analysis

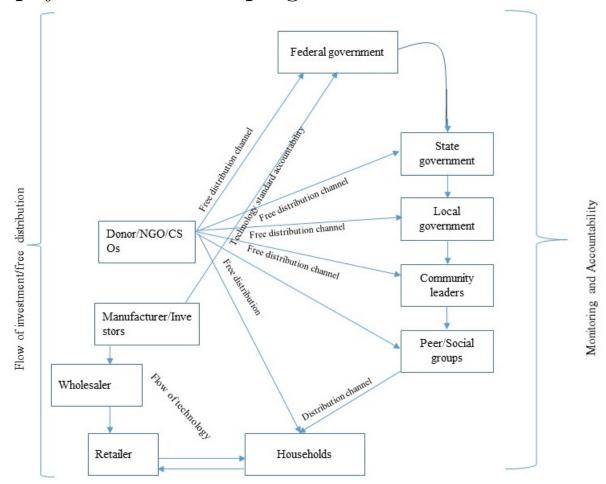
Table 7: CBA Result

	Pico-PV	ICS
Discount rate (%)	NPV	NPV
14	£351,038,330.33	£389,163,719.06
15	£336,026,248.60	£372,521,212.93
16	£321,785,136.13	£356,733,409.14

Note: We used Sun King Pro solar lantern @ £38.42 & Zoom Versa Charcoal & firewood ICS @ £30 with 5 years lifespan respectively.

Conclusion

- About 75% of rural households lack knowledge about renewable energy
- After learning about it, an overwhelming 92% showed WTP for electricity from renewable energy sources,
- while 80% indicated WTP for ICS
- On average, rural households are willing to pay £2.30 and £2.20 for the technologies every month
- It will take about 18 months for them to complete the payment
- Thus, 18 months are sufficient for investors to recoup over and above the cost of investment
- Going forward, to scale up renewable energy access, policies should be geared towards creating enabling environment for the private sector to thrive.


Conclusion cont'd

"Since I spend more on kerosene & firewood than I can pay monthly, I prefer to have the PPV and ICS to improve my lifestyle even though aged and poor. Please get me ICS & PPV soon!"

Conclusion cont'd

• However, investors might be sceptical due to risks associated with progress payment in developing countries

Concluding Remarks

THANK YOU FOR LISTENING